Inertial Sensors


Accelerometers – inertial sensors

MEMS inertial accelerometers consists of a mass-spring system, which resides in a vacuum. Exerting acceleration on the accelerometer results in a displacement of the mass in the spring system. The displacement of the mass depends on the mass-spring system, so a calibration is needed. Read-out can be via a capacitive system. MEMS accelerometers are available in 1D, 2D, and 3D versions. As the size of the mass-spring system directly relates to the resolution (and accuracy) of the accelerometer, 3D accelerometer chip are not yet accurate enough to be used in high-accuracy MEMS AHRS’s, such as the MTi-10, the MTi-100 and MTi-G-710. Main manufacturers of MEMS accelerometers are Analog Devices, Kionix and Colibrys.

Back to the Inertial Sensor Modules page

Gyroscopes – inertial sensors

Inertial gyroscopes can be found in various classes. Ring Laser Gyroscopes (RLG) and Fiber Optic Gyros (FOG) are very reliable and very expensive. They rely on light to be sent through a set of mirrors or a fiberglass cable in the opposite direction. A rotation of the gyroscope results in light in one direction to reach the other side of the set of mirrors/fiberglass cable earlier than light sent away in the opposite direction. Optical gyroscopes, such as the RLG and FOG are so accurate, that they can be used without reference sensors (see AHRS). This intrinsic accuracy makes them so expensive that they cannot be used in cost-sensitive applications.

MEMS Gyroscopes, on the other hand, are relatively inexpensive, and the reduced accuracy is compensated using reference sensors. Analog Devices is the major manufacturer of MEMS gyroscopes.

Back to the Inertial Sensor Modules page

MEMS gyroscopes

MEMS gyroscopes have a small vibrating mass that oscillates at e.g. 10’s of kHz. The mass is suspended in a spring system, readout is via a capacitive system as it is in accelerometers. When the gyroscope is rotated, the rotation exerts a perpendicular Coriolis-force on the mass that is larger when the mass is further away from the center of rotation. The oscillating mass thus gets a different read-out on either side of the oscillation, which is a measure for the rate of turn. A typical error in gyroscopes is g-sensitivity, caused by the deformation of the spring system inside the gyroscope. Xsens also compensates for this error source. Details on the precise working of MEMS gyroscopes and accelerometers are available on our dedicated gyroscopes website.

Back to the Inertial Sensor Modules page


Typical applications

Downloads & Documentation