t XD0201P, Revision D, 15 Dec 2020

Xsens DOT SDK
Programming Guide
for Android

Revision Date

A | 7 Jan 2020

B 25 April 2020

C 27 August 2020
D 15 Dec 2020

By
' XUF, ABO
XUF

XUF, CHW

XUF, CHW,
AJI

Changes
Initial release

Update minimum support to Android OS 8.0
Update SDK architecture diagram

Added supported platforms

Update new measurement modes

Add SDK changelogs links

Add data conversion example code

Delete OTA and MFM section

Add sync class and interfaces

Add recording class and interfaces

Add sync example code

Add recording example code

Add 4 new payload modes

Change the name of interfaces from “...Cb”
to “...Callback”

Add an interface to check new firmware

Add the workflow to start synchronization
Add the workflow to start and stop real-time
streaming

Add the workflow for heading reset

Add the workflow to start and stop recording
Add the workflow to export recording data
Add the new output rates for real-time
streaming and recording

Add new filter profile

Add button callback function

Support RSSI

Add get sync status function

Add stop sync function

© 2005-2020, Xsens Technologies B.V. All rights reserved. Information in this document is subject to change
without notice. Xsens, MVN, MotionGrid, MTi, MTi-G, MTx, MTw, Awinda, Xsens DOT and KiC are registered
trademarks or trademarks of Xsens Technologies B.V. and/or its parent, subsidiaries and/or affiliates in The
Netherlands, the USA and/or other countries. All other trademarks are the property of their respective owners.

Xsaens

2 WWW.XSENs.com

Table of Contents

1 Introduction......c.cccciiciiirmnmmsesmrsesmransssassssnnsssnnssansssnnssnannsnnnnnns 6
2 Getting Started.........ccviiiiiiri s s s 7
2.1 Platform ReqQUIrEMIENTS. .. vt 7
2.2 EX@MIPIE COUR ittt et 7
2N BT | (G O p =1 g T =1 (o Yo PP 7
2.4 Prerequisites for Android Studio Project........ccoiiiiiiiiiii e 7
2.5 IMPOrt SDK PaCKage . .. uceiiitiii ittt 7
2.6 Implement INEerface ..o i 8
A A 1 - T3] P 8
A T o | (=Y o =T oL 9
DA B o= o 1 £ o 1PN 9
3 SDK Usage with EXxamples.....ccvccvirvmmiemmsmsiamssnsmsnssanssnssanssansnns 10
3.1 Recommended WOrKIOW. . ..ouiuiir i 10
3.2 DEBUGGING flag. it e 11
3.3 ReconNnNection SetliNg....oiiiiiii i 11
T S = I =T o7 | P 11
78 T 5 Y [=T 12
3.6 Connect MUILIPIE SENSOIS. . ittt e e 13
3.7 INAliZatioN . oo 13
G 7 T 11 =T ol o o) i 14
3.8.1 Get current filter profile ..o e 14
3.8.2 Get all the filter Profiles ..o e 14
3.8.3 Setanew filter profile ..o 14
3.0 DU PUL LAl it 15
3.10 SYNCRIONIZAtiON Lo 16
3.10.1 Get SYNC SEAtUS. ..ttt e et e 17

G I O 0 A = | 51 o T ol P 17
3.10.3 Gl SYNC FrESUIES .. uiii it r e e s e e e e rnere e e aneannannans 17

O 0 Y w0 o 3=V o [o 18
3.11 Real-time Streaming ...o.eeie i e 18
G300 I A A B - | = T o T T 1 ' P 19
3.11.2 High fidelity MOdES ...vviriiiiiii i e e e ananans 20

G B G B 1= = o] AV =T =] T = 20
3.12 Heading ReSEE....uiiriiiiiiii et r e e 22

Xse ns 3 WWW.XSEeNs.com

G0 G T =T oo e | T [P 24

3.13.1 Get flash information.....ccoeiiiiii e 26
3.13.2 Start/stop reCOMdiNg ... uee i e e 26
3.13.3 Get recording StatUs.....coe i 27
3.13.4 Get recording LM ..o 27
3.14 Recording data eXPOrt. ... 29
3,15 Other fUNCEIONS ot e 31
3.15.1 ReEAA RS ST ittt 31
T T A o (=T o | Y PP 31
G TG B o0 1T == LY o o 31
3.15.4 BULton CallbDacKoiuiiiiiii i e 31
3.15.5 Firmware update notificationccoiiiiiii e 32

L I N5 T X1 o T [G 33
4.1 Real-time streaming MoOdESc.iiiiiiiiii i 33
4.1.1 Extended (QUaterNiON) ..uuie ittt et e e e ae s 33
4.1.2 Complete (QUAatEINION) c.uuii it e e e e e e e aeanens 33
4.1.3 Orientation (QUALEMION) .. uiu i e aaaens 33
s R S =T T [=To I = U1 1] o PP 33
4.1.5 ComMPlete (EUIB) wuiniii e e e e e e e 33
4.1.6 Orientation (BEULEI) .o e 34
4.1.7 Free acCelerationiiieiiiii i 34
4.1.8 High fidelity (With Mag) ...coviiii e 34
4.1.9 High fidelity. . .ooii 34
4.1.10 Delta quantities (With mMag).....ccooiiiiiii s 34
4.1.11 Delta QUaANTIIES .ot 35
4.1.12 Rate quantities (With mMag)....ccoviiiiiii 35
4.1.13 Rate qUaNtitiEs oo 35
s R S O 1= o o I T T = 35
4.1.15 CUSEOM MOAE 2 ..ot et e e e e e e e e s e s e e anens 35
2 N G O 1= o o I T T [36

Xse ns 4 WWW.XSEeNs.com

List of Tables

Table 1: Platform requUIiremMEnts 7
Table 2: Classes in XSENS DOT SDKuiuiiuiiiiie ittt e et e e e e e e aeeaeaaanens 8
Table 3: Interfaces in XSens DOT SDKuiiiiieiii it e e enaanens 9
Table 4: PermisSSiONS liSt. ... i e e e e e 9
B0 (ST O LU oo T Ll =) = PP 15
Table 6: Heading Status ..o e 22
Table 7: Recording Status e 27
Table 8: Extended (QUALEIMION) ..o e eeaes 33
Table 9: Complete (QUALEIMION)uii e et aeanes 33
Table 10: Orientation (QUAatErNION)eii i e eaaes 33
Table 11: EXtended (EUIE) ... e e e eeaes 33
Table 12: Complete (BUIEI) ... et eenes 33
Table 13: Orientation (BEUIEI) ...vie i e aeenes 34
Table 14: Free acCeleralion ... 34
Table 15: High fidelity (With mMag) ..o e 34
Table 16: High fidelify couue i 34
Table 17: Delta quantities (With Mag) ...c.vvieiiii e 34
Table 18: Delta QUANTIEIES. vttt 35
Table 19: Rate quantities (With Mag)ovvi i 35
Table 20: Rate qUANTITIES. ..o 35
Table 21: Custom MOdE 1 ..uuiiiiiii i e 35
Table 22: CusStom MOAE 2 ... 35
Table 23: CusStom MOdE 3 ..uii i 36

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

XS

Xsens DOT Mobile SDK ArchiteCturec.iiviiiii e 6
Xsens DOT Android SDK WOrKFIOW ...cvieiieiii i ee 10
Workflow to start synchronization with SDK ... 16
Workflow to start and stop real-time streamingcoooviiiiiiiiiiiicic i, 18
Workflow for heading reSetcouviiiiiii i e 22
Workflow to start and stop recording.......coovveiiiiiiiiii e 24
Workflow to export recording dataccoviiiiiiiii 29

e ns 5 WWW.XSens.com

1 Introduction

The Xsens DOT Android SDK is a software development kit for Android mobile applications.
Android developers can use this SDK to build their applications to scan and connect the
sensors, get data in real-time streaming or recording, as well as other functions.

This document mainly addresses SDK usage with example codes. It should be used
together with Xsens DOT SDK core documentation with detailed information. Before getting
started with the SDK, it's advised to read Xsens DOT User Manual first to understand the
basic functions of the sensor.

Xsens DOT SDK

Models BLE scanner

External callback EEEIB ROU IR
Xsens DOT Data Data

parser
Xsens DOT Payload

Figure 1: Xsens DOT Mobile SDK Architecture

Scanner callback
[Mobile application

Device callback

The SDK provides some public classes for developers to facilitate easier integration into
specific application. Figure 1 shows the SDK architecture and components. It contains 3
main models to manage the state of device, data payload types and data output. It also
contains different classes! available for usage. The data processor library is integrated in
SDK to process the data from firmware. Other libraries like sensor fusion and calibration
libraries are running on Xsens DOT firmware.

! Not every class can be new or referenced

Xse ns 6 WWW.XSENs.com

2 Getting Started

2.1 Platform Requirements

Table 1 shows the Android OS, CPU architecture and Bluetooth requirements for the
mobile devices.

Table 1: Platform requirements

Platform requirements ‘

e Android OS 8.0 and above

e ARMv8 CPU architecture

e Bluetooth
o Best performance with BLE 5.0, DLE? supported
o Compatible with Bluetooth 4.2

2.2 Example code
Refer to this project on GitHub for the Android example code of Xsens DOT SDK:

https://github.com/xsens/xsens dot example android

2.3 SDK Changelogs
https://base.xsens.com/hc/en-us/articles/360013337940-Xsens-DOT-Release-Notes-

and-Change-Logs-

2.4 Prerequisites for Android Studio Project

This section addresses setup parameters for proper usage of the Xsens DOT Android SDK.
Make sure the following configurations are met when creating the Android Studio project.

1.

wN

Make sure the minSdkVersion is 26+ (Android 8.0) in the build.gradle (app level)
file

Use androidx.* artifacts

Dependency workmanager: implementation "androidx.work:work-runtime:2.4.0"
Dependency lifecycle: implementation "androidx.lifecycle:lifecycle-runtime:2.2.0"

2.5 Import SDK Package

This section addresses setup parameters and some practical considerations for proper
usage of the Xsens DOT SDK. The following steps describe how to import the SDK object
into your Android Studio project.

1.

Open your Android Studio project and select File /New/New Module.., select
Import .JAR/.AAR Package.

2 Data Length Extension

Xse ns 7 WWW.XSENs.com

https://github.com/xsens/xsens_dot_example_android
https://base.xsens.com/hc/en-us/articles/360013337940-Xsens-DOT-Release-Notes-and-Change-Logs-
https://base.xsens.com/hc/en-us/articles/360013337940-Xsens-DOT-Release-Notes-and-Change-Logs-

N

Select the AAR file of the XsensDotSdk, click Finish.

3. Select File/Project Structure../Dependencies, choose a main module (it's app
in normal case) and click the Add Dependency/Module Dependency.

4. Select XxsensDotSdk module then press Ok to close this dialog.

5. After Build finished, you can do some basic settings of the SDK as shown below.

private void initXsSdk() {
String version = XsensDotSdk.getSdkVersion () ;

XsensDotSdk.setDebugEnabled (true) ;
XsensDotSdk.setReconnectEnabled (true) ;

2.6 Implement Interface

Developers can implement XsensDotDeviceCallback and XsensDotScannerCallback in one
activity as shown below.

public class MainActivity extends AppCompatActivity
implements XsensDotDeviceCallback,
XsensDotScannerCallback {

}

If IDE shows an error message, click the line and press Alt + Enter to choose Implements
methods, the IDE will generate all the required methods that needs to be implemented
automatically.

2.7 Classes

The list of classes as part of Xsens DOT SDK is shown in Table 2.
Table 2: Classes in Xsens DOT SDK

Class Description

XsensDotSdk The SDK main object used for global settings such as enable
debug or reconnect features.

Represents a Xsens DOT device object, including basic information
and operations. Return data by XsensDotDeviceCallback.

Contains all the measurement data, including acceleration, angular

XsensDotDevice

XsensbotData velocity, and mag data, etc.

XsensDotLogger A class for data logging.

XsensDotParser A class for parsing data from the device via Bluetooth.

XsensDotScanner A class for scanning Xsens DOT device. Return the scanned device
by XsensDotScannerCallback.

XsPayload For setting different payload types for measurement.

Xse ns 8 WWW.XSENs.com

Data recording manager, including data recording, and exporting
methods.

XsensDotSyncManager Synchronization manager for sensors’ syncing

XsensDotRecordingManager

2.8 Interfaces
The list of available interfaces as part of Xsens DOT SDK is shown in Table 3.
Table 3: Interfaces in Xsens DOT SDK

Class Description

XsensDotDeviceCallback An interface for notifying device information, measurement

data.
XsensDotScannerCallback An interface for notifying LE scan result
XsensDotMeasurementCallback An interface for notifying measurement status and data.
XsensDotCiCallback An interface for notifying firmware crash information result.
XsensDotRecordingCallback An interface for notifying recording status and data of device.
XsensDotSyncCallback An interface for synchronization result.
XsensDotOtaSimpleCallback An interface for checking new firmware version.

2.9 Permissions

The permissions used by this SDK are as listed in Table 4. Make sure these permissions
are set and are part of AndroidManifest.xml file in your project.

Table 4: Permissions list

Permission Purpose

BLUETOOTH For connecting to sensor
BLUETOOTH_ADMIN For connecting to sensor
ACCESS_FINE_LOCATION For LE scanning
ACCESS_COARSE_LOCATION For LE scanning
READ_EXTERNAL_STORAGE For storing the log file
WRITE_EXTERNAL_STORAGE For storing the log file

Xse ns 9 WWW.XSENs.com

3 SDK Usage with Examples

3.1 Recommended workflow

The Android SDK workflow is shown in Figure 2. This flow process can be used by Android
developers after importing SDK library into Android project and creating an SDK object.

. L Connected Reconnect Disconnected
Mobile application

Start BLE scan Initialization Set measurement mode

Get scan results Set output rate Start Real-time streaming
. l A
g N
Create device object Set filter profile [Get measurement data J
. o

I

Implement callback
funcitons

A 4

Synchronization [Log measurement data]

Stop Real-time streaming

Figure 2: Xsens DOT Android SDK Workflow

The first thing is to start BLE scanning. Developers can obtain the scan result from a
callback function and use the BluetoothDevice object to initialize XsensDotDevice class.
Most of the operations can be done by making use of this class.

Developers can call the connect function in XsensDotDevice class to connect to the sensors.
If the connection process fails, SDK will check if the reconnection feature is enabled or not.
If it is enabled, a reconnection will start automatically.

Each step is further explained in the following sections with example code.

Xse ns 10 WWW.XSEeNs.com

3.2 Debugging flag

This is a static function and can be used to enable/disable the debug messages. If set to

true, the SDK will output debug message with this tag — XsensDotSdk.
XsensDotSdk.setDebugEnabled (true) ;

This setting is disabled by default.

3.3 Reconnection setting

This is a static function and can be used to enable/disable the reconnection feature. If set
to true, the SDK will start to reconnect the sensor(s) automatically when the connection is

lost.
XsensDotSdk.setReconnectEnabled (true) ;

You can cancel the reconnecting by:
xsDevice.cancelReconnecting () ;

3.4 BLE scan

To use this, declare a XsensDotScanner object and try to initialize. There are two additional
parameters that needs to be put in the constructor - application context and an instance
of XsensDotScannerCallback (i.e. an activity that implemented the
XsensDotScannerCallback interface).

The mode can be one of these: SCAN_MODE_BALANCED, SCAN_MODE LOW _LATENCY or
SCAN_MODE _LOW_POWER.

private XsensDotScanner mXsScanner;
private void initXsScanner () {

mXsScanner = new XsensDotScanner (mContext, this);
mXsScanner.setScanMode (ScanSettings.SCAN MODE BALANCED) ;

}

To start the LE scanning, the function below should be called.
mXsScanner.startScan () ;

The scanned result can be obtained by using the onXsensDotScanned callback function.

Note that only Xsens DOT device is reported.
@Override
public void onXsensDotScanned (BluetoothDevice device) ({

String name = device.getName () ;
String address = device.getAddress() ;

Xse ns 11 WWW.XSENS.Ccom

3.5 Connect

Declare a XsensDotDevice object and use the following parameters to initialize - the
application context, BluetoothDevice object and an instance of XsensDotDeviceCallback

(i.e., an activity that implemented XsensDotDeviceCallback interface).
XsensDotDevice xsDevice =
new XsensDotDevice (mContext, device, MainActivity.this);

Then use the following function to connect to the device.
xsDevice.connect () ;

As a best practice, it is preferred to check whether the device’s name is null or not before
you connect to it. After connecting, the onXsensDotConnectionChanged callback function
will be triggered. If the state equals to CONN_STATE_CONNECTED, it means the Bluetooth
GATT connection is successful after which all BLE services/characteristics will be discovered
automatically.

The state of service discovery can be checked from onXsensDotServicesDiscovered callback
function.
@QOverride
public void onXsensDotConnectionChanged (String address,
int state) {

if (state == XsensDotDevice.CONN STATE DISCONNECTED) {
// Update UI

}

@Override
public void onXsensDotServicesDiscovered (String address,
int status) {

if (status == BluetoothGatt.GATT SUCCESS) {
// Update UI

}

Once the connection is successful, device information can be obtained using the following
methods

getName

getAddress
getConnectionState
getFirmwareBuildTime
getFirmwareVersion
getBatteryState
getBatteryPercentage
getMeasurementMode
getMeasurementState
getPlotState

Xse ns 12 WWW.XSEeNs.com

getLogState

getTag
getCurrentOutputRate
getFilterProfileInfoList
isSynced

The following function call can be used to disconnect the device.
xsDevice.disconnect () ;

3.6 Connect multiple sensors

To connect multiple sensors, the XsensDotDevice object can be put into a list under one

class.
private ArraylList<XsensDotDevice> mDevicelLst = new ArrayList<>();

After initiating connection to this device, one can add this object to the list to get the
connection result from onXsensDotConnectionChanged callback function.
XsensDotDevice xsDevice = new XsensDotDevice (

mContext, device, MainActivity.this);
xsDevice.connect () ;
mDevicelLst.add (xsDevice) ;

To disconnect one device, use the key variable - address to get the device object from the
list and then call disconnect method. It is very important to make sure that the
XsensDotDevice will be removed from the list after the device is disconnected. In a similar
way, put XsensDotLogger object into a list to manage data collecting and logging for
multiple devices.

3.7 Initialization

After the sensor connection, an initialization process is introduced to enable BLE
notifications and obtain basic information, such as firmware version, tag name,
synchronization status, etc. onXsensDotInitDone() is the callback after the initialization is
successful.

NOTES:
e Any read or write operation should be called after a successful.

public void onXsensDotInitDone (String address) {
// get tag name, version, battery info etc.
XsensDotDevice.getFirmwareVersion () ;
XsensDotDevice.getTag () ;
XsensDotDevice.getBatteryPercentage () ;

XsensDotDevice.identifyDevice () ;

Xse ns 13 WWW.XSENS.Ccom

3.8 Filter profile

After the initialization is done, you can get or set the current filter profile for the
measurement. Refer to section 3.2 in the User Manual for more information about filter
profiles.

3.8.1 Get current filter profile

Get the current filter profile that is applied in the measurement:
int profileIndex = XsensDotDevice.getCurrentFilterProfileIndex () ;

You can also get the current filter profile from callback:
SomeClass implements XsensDotDeviceCallback

public void onXsensDotFilterProfileUpdate (String address, int
filterProfileIndex) {

}

3.8.2 Get all the filter profiles

Get all the supported filter profiles through getFilterProfileInfolList:
ArrayList<FilterProfileInfo> list =
XsensDotDevice.getFilterProfileInfolist () ;

You can also get this list from the callback during initialization:
SomeClass implements XsensDotDeviceCallback

public void onXsensDotGetFilterProfileInfo (String address,
ArrayList<FilterProfileInfo> filterProfileInfolist) ({

}

3.8.3 Set a new filter profile

Before set a new filter profile, get the index first.
int profileIndex = list.get(0).getIndex();
int profilelIndex FilterProfileInfo.getIndex() ;

Set current filter profile with the index from the profile list.
XsensDotDevice.setFilterProfile (int profilelIndex) ;

onXsensDotFilterProfileUpdate() callback will be triggered if the new filter profile is set
successfully.

Xse ns 14 WWW.XSENS.Ccom

3.9 Output rate

After the initialization is done, you can get or set the output rate for the measurement by
XsensDotDevice class. Table 5 shows the available output rates during measurements.

Table 5: Output rates

Measurement ~ Output rates
Real-time streaming 1 Hz, 4 Hz, 10 Hz, 12 Hz, 15 Hz,20 Hz, 30 Hz, 60 Hz
Recording 1 Hz, 4 Hz, 10 Hz, 12 Hz, 15 Hz,20 Hz, 30 Hz, 60 Hz, 120 Hz

Get the current output rate that is applied in the measurement:
int outputRate = XsensDotDevice.getCurrentOutputRate() ;

You can also get output rate from the callback during initialization:
SomeClass implements XsensDotDeviceCallback {

public void onXsensDotOutputRateUpdate (String address, int
outputRate) {

}
}

Set a new output rate for the measurement:
XsensDotDevice.setOutputRate (int outputRate) ;

onXsensDotOutputRateUpdate() callback will be triggered if the new output rate is set
successfully.

Xse ns 15 WWW.XSens.com

3.10 Synchronization

All sensors will be time-synced with each other to a common time base after

synchronization. Refer to section 3.3.2 in Xsens DOT User Manual for more information.
Refer to Figure 3 for workflow to start synchronization.

or
I I
I 1
|]
=1 =+
BLE connection
Start Sync T~ .
[--- - e - L. ‘\‘
SDK disconnect sensor \
-7 \ \
i ' '
' '
Synchronizétion Waiting for ~ Sync timeout
12 seconds 14 seconds 48 seconds
\\\ :' |’
o] L
/ i
’ i
e EEEEEEFTEEEE 4 S
SDK BLE re-connect e
< M
SDK BLE connection
‘- ________________________________
Read sync result
Sync result callback
1 T
| |
1 1
$ 1
Start measurement

SDK internal logic

Figure 3: Workflow to start synchronization with SDK
First implement the XsensDotSyncCallback interface.

public class RecordingFragment implements XsensDotSyncCallback {

}

public void onSyncingProgress (int progress, int requestCode) ({

Xsaens 16

WWW.XSens.com

public void onSyncingResult (String address, boolean isSuccess, int
requestCode) {
}

public void onSyncingDone (HashMap<String, Boolean> syncingResultMap,
boolean isSuccess, int requestCode) {

}

public void onSyncingStopped (String address, boolean isSuccess, int
requestCode) {

}
}

3.10.1 Get sync status

After the initialization is done, you can get sync status by XsensDotDevice class:
boolean isSynced = XsensDotDevice.isSynced() ;

You can also get sync status from the callback function during initialization:
SomeClass implements XsensDotDeviceCallback {
public void onSyncStatusUpdate (String address, boolean isSynced) {

}

3.10.2 Start sync

One of the sensors must be set as the root sensor before starting synchronization:
mSelectedDevicelList.get (0) .setRootDevice (true) ;

Start the synchronization. mSelectedDevicelList is the list of sensors that need to be

synchronized.
XsensDotSyncManager.getInstance (this) .startSyncing (mSelectedDevicelist

, SYNCING REQUEST CODE)

onSyncingProgress(int progress, int requestCode) is the callback during synchronization.
The sync process is updated via “progress”.

NOTES:
e Do not interrupt during the synchronization process.

3.10.3 Get sync results

onSyncingResult() function will be called if one sensor has finished the synchronization. If
all the sensors finish the synchronization, onSyncingDone() function will be called back.
syncingResultMap contains the sync results of the device list in startSyncing(). isSuccess
represents whether the synchronization is successful or not.

Xse ns 17 WWW.XSENS.Ccom

If synchronization fails on any sensor, it's advised to stop the synchronization for the
successful sensors and re-do the synchronization again.

Start real-time streaming and recording after all the sensors are synchronized.

3.10.4 Stop sync

You can stop the synchronization for all the synced sensors:
XsensDotSyncManager.getInstance (this) .stopSyncing () ;

Or stop the synchronization for specific sensors.
XsensDotSyncManager.getInstance (this) .stopSyncing (dotDevices) ;

After one sensor is stopped, you will get the callbacks to indicate the synchronization is
stopped and the sync status is updated.
public void onSyncingStopped(String address, boolean isSuccess,
int requestCode) {

}
public void onSyncStatusUpdate (String address, boolean isSynced) {

}

3.11 Real-time streaming

Figure 4 shows the workflow to start and stop real-time streaming.

-
:
-+
)

1-——

BLE connection

Set measurement mode

Start streaming

Plot data callback

Stop streaming

--------- SDK internal logic

Figure 4: Workflow to start and stop real-time streaming

Xse ns 18 WWW.XSEeNs.com

The XsensDotDevice can report sensor data via onXsensDotDataChanged callback function.

To use this, you need to notify the sensor to enter the measuring mode first. There are 16
measurement modes with different payload modes. Refer to Appendix for data outputs of
different modes. Section 4.2 in Xsens DOT User Manual also gives detailed explanation
about output values.

xsDevice.setMeasurementMode (XsPayload.PAYLOAD TYPE HIGH FIDELITY NO MA
G) s

Then call this function to start measuring.
xsDevice.startMeasuring () ;

The measuring data can be received from onXsensDotDataChanged callback function.
@Override
public void onXsensDotDataChanged (String address,
XsensDotData xsensDotData) {

}

The address variable can be used to help identify the device for data association. The
XsensDotData object contains all measuring data, timestamp, and the packet counter
information. The following methods from XsensDotData object can be used to get these
data outputs according to the measurement mode.

e getAcc()

getGyr()

getDq()

getDv()

getMag()

getEuler()

getQuat()
getSampleTimeFine()
getPacketCounter()

The XsensDotData object has implemented the Parcelable object from Java, so this
object can be passed to another class by Broadcast event.

The following function call can be used to stop the measurement.
xsDevice.stopMeasuring () ;

3.11.1 Data logging

The XsensDotLogger class provides a way to log measurement data to the SD card of
mobile devices. Try to initialize this object with the full file path. After this object is created,

it will write a default title string of each column and save to csv file.
XsensDotLogger xsLogger = new XsensDotLogger (

Environment.getExternalStorageDirectory() + "/YOUR DIR/");

The following function can be used to update the file content:
public void update (XsensDotData xsData)

Xse ns 19 WWW.XSENS.Ccom

Make sure the data output stream is closed before you stop measuring. You can call this

function to flush and close the stream.
xsLogger.stop () ;

3.11.2 High fidelity modes

In high fidelity mode, higher frequency (800 Hz) information is preserved with lower output
data rate (60 Hz), even with transient data loss. There are 2 high fidelity modes in Android
SDK to provide inertial data:

e PAYLOAD_TYPE_HIGH_FIDELITY_WITH_MAG

e PAYLOAD_TYPE_HIGH_FIDELITY_NO_MAG

To parse the high fidelity data to to delta_q, delta_v or calibrated angular velocity and
acceleration, you need to set the measurement modes to high fidelity modes. After starting
the measurement, you can get these values with getAcc(), getGyr(), getDq(), getDv()

methods from XsensDotData object.

XsensDotDevice xsensDotDevice = ...;

//set measurement mode

xsensDotDevice.setMeasurementMode (XsPayload.PAYLOAD TYPE HIGH FIDELITY
WITH MAG) ;

//start measurement
xsensDotDevice.startMeasuring () ;

public void onXsensDotDataChanged (String address, XsensDotData data) {
final double[] acc = data.getAcc();
final double[] gyr data.getGyr () ;
final double[] dg = data.getDqg() ;
final float[] dv = data.getDv (),

3.11.3 Data conversions

Data conversion functions are provided in Xsens DOT SDK. Developers can make use of
these conversion functions to get the measurement quantities as required in their
applications.

Convert dq, dv to angular velocity and acceleration

You can get dg and dv outputs from onXsensDotDataChanged callback in some
measurement modes (e.g. PAYLOAD_TYPE_DELTA_QUANTITIES_WITH_MAG).

You can also set other values to dq and dv as following:
XsensDotData xsData = ...;

xsData.setDg(...) ;

xsData.setDv (..) ;

Xse ns 20 WWW.XSENS.Ccom

If there are dq and dv in XsensDotData object, the default data processor can be used to
convert dq, dv to angular velocity and acceleration.

private DataProcessor mDataProcessor =
XsensDotParser.getDefaultDataProcessor () ;

XsDataPacket packet = XsensDotParser.getXsDataPacket (mDataProcessor,
xsData.getDg(), xsData.getDv()):;

Then use the output packet to get the angular velocity and acceleration.
final double[] acc = XsensDotParser.getCalibratedAcceleration (packet);
final double[] gyr =
XsensDotParser.getCalibratedGyroscopeData (packet) ;

Convert quaternion to Euler angles

quaternion2Euler() method is provided in XsensDotParser class to convert quaternion
values to Euler angles.

final float[] quats = xsensDotData.getQuat();

final double[] eulerAngles = XsensDotParser.quaternion2Euler (quats) ;

Xse ns 21 WWW.XSENS.Ccom

3.12 Heading Reset

Heading reset function allows user to align heading outputs among all sensors and with
the object they are connected to. Performing a heading reset will determine the orientation
and free acceleration data with respect to a different earth-fixed local frame (L"), which
defines the L’ frame by setting the X-axis of L’ frame while maintaining the Z-axis along
the vertical. It computes L’ such that Yaw becomes 0 deg.

The heading reset function must be executed during real-time streaming and with
measurement mode including orientation output. The reset orientation is maintained
between measurement start/stop and connection/disconnection but will be lost after a
device reboot.

Figure 5 shows the workflow to do the heading reset.

DOt
|
.

BLE connection

Real-time streaming

Get current status
Function: getHeadingStatus

Send reset command
Function: resetHeading

Read ACK
Callback: onXsensDotHeadingChanged

Figure 5: Workflow for heading reset
Refer to Table 6 for the heading reset status of the sensor.

Table 6: Heading status

Heading reset status Description

HEADING_STATUS_XRM_HEADING Heading has been reset
HEADING_STATUS_XRM_DEFAULT_ALIGNMENT Heading has been reverted to default status
HEADING_STATUS_XRM_NONE Default status

When the sensor is initially powered on, it is HEADING_STATUS_XRM_NONE by default,
then use following functions to perform heading reset.

XsensDotDevice xsensDotDevice = ...;
xsensDotDevice.setXsensDotMeasurementCallback (this) ;

//set to one sensor funsion mode

//start measurement

Xse ns 22 WWW.XSens.com

xsensDotDevice.resetHeading () ;

You need to implement XsensDotMeasurementCallback in one class and override the

following two functions to obtain the result of heading reset.
public class MeasurementFragment implements XsensDotMeasurementCallback ({

@Override
public void onXsensDotHeadingChanged (String address, int status,
int result) {

}

@Override
public void onXsensDotRotLocalRead (String address, float][]
quaternions) {

}
}

If the heading reset is successful, status should be HEADING_STATUS_XRM_HEADING,
and the result is HEADING_SUCCESS when onXsensDotHeadingChanged is triggered.

Then revert heading to original value by calling this function.
xsensDotDevice.revertHeading () ;

Xse ns 23 WWW.XSENS.Ccom

3.13 Recording

Figure 6 shows the recommended workflow to start and stop recording with Android SDK.

p N
AN Ii
AV

p B

BLE connection

Enable notification

Callback

Request flash info

j

Callback

Start recording

i

Callback
Request state during recording
Callback
Stop recording
Callback

| | e SDK internal logic

Figure 6: Workflow to start and stop recording

To perform the recording function, an XsensDotRecordingManager needs to be
instantiated. In most cases, one XsensDotDevice uses one XsensDotRecordingManager.

First you need to implement the XsensDotRecordingCallback interface:
public class RecordingFragment implements XsensDotRecordingCallback {

public void onXsensDotRecordingNotification (String address, boolean
isEnabled) {

}

public void onXsensDotEraseDone (String address, boolean isSuccess) {

}

Xse ns 24 WWW.XSEeNs.com

public void onXsensDotRequestFlashInfoDone (String address, int
usedFlashSpace, int totalFlashSpace) {

}

public void onXsensDotRecordingAck (String address, int recordingId,
boolean isSuccess, XsensDotRecordingState recordingState) {

}

public void onXsensDotGetRecordingTime (String address, int
startUTCSeconds, int totalRecordingSeconds, int
remainingRecordingSeconds) {

}

public void onXsensDotRequestFileInfoDone (String address,
ArrayList<XsensDotRecordingFileInfo> list, boolean isSuccess) {

}

public void onXsensDotDataExported (String address,
XsensDotRecordingFileInfo fileInfo, XsensDotData exportedData) {

}

public void onXsensDotDataExported (String address,
XsensDotRecordingFileInfo fileInfo) {

}

public void onXsensDotAllDataExported (String address) {

}

public void onXsensDotStopExportingData (String address) {

}

Then instantiate an XsensDotRecordingManager, for example:

private XsensDotRecordingManager mManager;

mManager = XsensDotRecordingManager (context, XsensDotDevice,
RecordingFragment.this) ;

Before performing recording-related operations, you need to enable Notification:
mManager.enableDataRecordingNotification () ;

Then wait for the callback, isEnabled indicates whether the notification is enabled or not.

Xse ns 25 WWW.XSens.com

3.13.1 Get flash information

We have a total of 16 MB flash for recording. So firstly, we need to get the available flash
space and the remaining recording time before start recording.

If the activation of notification is successful, you can get the flash info:
public void onXsensDotRecordingNotification (String address, boolean

isEnabled) {

if (isEnabled) {
mManager.requestFlashInfo () ;

}

Waiting for the callback to obtain the used space and the total space size:
public void onXsensDotRequestFlashInfoDone (String address, int
usedFlashSpace, int totalFlashSpace) {

// get usedFlashSpace & totalFlashSpace, if the available flash space
<= 10%, it cannot start recording

}

If the recording storage space is insufficient, clear flash storage space is needed. You can
call mManager.eraseRecordingData() method and wait for the callback:
public void onXsensDotEraseDone (String address, boolean isSuccess) {
// do somethings
}

3.13.2 Start/stop recording

After getting the flash information of recording, you can call mManager.startRecording() to
start recording. Timed recording is also supported with mManager.startTimedRecording.
recordingTimeSeconds is the timer for timed recording and the unit is second. It should
not exceed the maximum recording time (88 minutes).

Call mManager.stopRecording() method to stop recording. Recording will also stop
automatically in the following situations:

e power button is pressed over 1 second.

e time is up for timed recording.

e flash memory is over 90%.

After start and stop, you need to wait for the callback result:
public void onXsensDotRecordingAck (String address, int recordingld,
boolean isSuccess, XsensDotRecordingState recordingState) {

if (recordinglId ==
XsensDotRecordingManager .RECORDING ID START RECORDING) {
// start recording result, check recordingState, it should be
success or fail.

Xse ns 26 WWW.XSENS.Ccom

} else if (recordingld ==
XsensDotRecordingManager .RECORDING ID STOP RECORDING) {
// stop recording result, check recordingState, it should be
success or fail.

3.13.3 Get recording status

You can check the recording status by calling mManager.requestRecordingState() and
through onXsensDotRecordingAck() callback.

public void onXsensDotRecordingAck (String address, int recordingId,
boolean isSuccess, XsensDotRecordingState recordingState) {

if (recordingId ==
XsensDotRecordingManager .RECORDING ID GET STATE) {

if (recordingState == XsensDotRecordingState.onErasing

| | recordingState == XsensDotRecordingState.onExportFlashInfo

| | recordingState == XsensDotRecordingState.onRecording

| | recordingState ==
XsensDotRecordingState.onExportRecordingFileInfo

| | recordingState ==

XsensDotRecordingState.onExportRecordingFileData) {

}

Table 7: Recording status

Recording status Description

XSRecordinglsidle Idle status
XSRecordingIsRecording Sensor is recording
XSRecordingIsRecordingStopped Recording is stopped
XSRecordingIsErasing Erasing recording data
XSRecordingIsFlashInfo Sensor is getting flash information

3.13.4 Get recording time

You can check how long the sensor has been recording in normal or timed recording by
calling mManager.requestRecordingTime(), via onXsensDotGetRecordingTime() callback.
public void onXsensDotGetRecordingTime (String address, int
startUTCSeconds, int totalRecordingSeconds, int
remainingRecordingSeconds) {
// startUTCSeconds is used for normal and timed recoding, and
timestamp when recording starts in seconds

Xse ns 27 WWW.XSens.com

// For timing recording

// totalRecordingSeconds returns the total recording time

// remainingRecordingSeconds is the remaining time of the timed
recording

}

Xse ns 28 WWW.XSEeNs.com

3.14 Recording data export

Figure 7 shows the recommended workflow to start and stop recording with Android SDK.

5ot
|
i
D

}--—-

BLE connection

Enable notification
Callback

S

Request recording file info
Callback

Start data exporting

Callback

W

Stop data exporting
Callback

--------- SDK internal logic

Figure 7: Workflow to export recording data

Before exporting data, ensure that Notification and mManager.requestFlashinfo() are
enabled first.

After selecting the sensors to be exported, call mManager.requestFileInfo() to get the list
of recording files:
public void onXsensDotRequestFileInfoDone (String address,
ArrayList<XsensDotRecordingFileInfo> list, boolean isSuccess) {

// A list of file information can be obtained, one message
contains: fileId, fileName, dataSize

}

After getting the file list, select the export data quantities and call the method
mManager.selectExportedData(mSelectExportedDatalds). mSelectExportedDatalds is an
array of data quantities that need to be exported. Please sort from smallest to largest.
Check XsensDotRecordingManager.RECORDING_DATA_ID_* for detailed information. For

example:
mSelectExportedDatalds = new byte[3];

Xse ns 29 WWW.XSENS.Ccom

mSelectExportedDatalds[0] =

XsensDotRecordingManager .RECORDING DATA ID TIMESTAMP;
mSelectExportedDatalds[l] = B -
XsensDotRecordingManager . .RECORDING DATA ID EULER ANGLES;
mSelectExportedDatalds[2] = B - B

XsensDotRecordingManager .RECORDING DATA ID CALIBRATED ACC;

NOTES:
e Free acceleration is not provided in this firmware. Refer to this base article to
calculate free acceleration from quaternion and dv.

Then select the files to be exported and call mManager.startExporting(exportingFileList)
according to the exportingFileList to export.

public void onXsensDotDataExported (String address,
XsensDotRecordingFileInfo fileInfo, XsensDotData exportedData) {

// When the export is in progress, this callback will be called,
returning each exported data XsensDotData, corresponding to the
selected field

// Data can be stored through and written to the csv file

// E.g:

if (xsLogger == null) {

xsLogger = XsensDotLogger.createRecordingsLogger (ctx,
mSelectExportedDatalds, filename, tag, device.firmwareVersion,
BuildConfig.VERSION NAME) ;
}
xsLogger.update (data) ;

Every time a file is exported, there will be a callback:
public void onXsensDotDataExported (String address,
XsensDotRecordingFileInfo fileInfo) {

}

All the files have been exported:
public void onXsensDotAllDataExported (String address) {
}

During the exporting, you can also stop by calling mManager.stopExporting():
public void onXsensDotStopExportingData (String address) {
// Determine whether all devices stop exporting

}

IMPORTANT!

One sensor corresponds to one manager. You need to clear the previous manager if this
manager is on longer used or renew a new manager.

mManager.clear () ;

Xse ns 30 WWW.XSens.com

https://base.xsens.com/hc/en-us/articles/360016094599-Calculating-Free-Acceleration

3.15 Other functions

3.15.1 Read RSSI

While scanning sensors, you can get RSSI from scanner callback:
SomeClass implements XsensDotScannerCallback {
public void onXsensDotScanned (BluetoothDevice device, int rssi) {

}
}

You can also read RSSI when sensor is connected:
XsensDotDevice.readRssi () ;

It will trigger the callback:
SomeClass implements XsensDotDeviceCallback {
public void onReadRemoteRssi (String address, int rssi) {

}

3.15.2 Identify

To identify or find your device, you can call the following function. The device will fast blink
8 times and then a short pause when you call this function.
xsDevice.identifyDevice () ;

3.15.3 Power saving

In power-saving mode, sensors will turn off the signal pipeline and BLE connection, put the
MCU in a sleep state to ensure minimum power consumption. The default time threshold
to enter power saving mode is set to 10 min in advertisement mode and 30 min in
connection mode. These values are saved in the non-volatile memory and can be adjusted
in Xsens DOT app or SDK.

There is an example to set power saving time in advertisement and connection mode both

to 30 minutes.
XsensDotDevice.setPowerSaveTimeout (timeoutXMinutes, timeoutXSeconds,
timeoutYMinutes, timeoutYSeconds) ;

3.15.4 Button callback

If there is a single click on the power button during connection, a notification will be sent
with a timestamp when this single click is released. This function is called as “Button
callback”.

When the pressing time is 10~800ms, it is judged as a valid single click. The timestamp is
from sensor’s local clock and independent of synchronization.

Xse ns 31 WWW.XSENS.Ccom

SomeClass implements XsensDotDeviceCallback ({

public void onXsensDotButtonClicked (String address, long
timestamp) {

}

3.15.5 Firmware update notification

We can check if there is a new firmware version. Please make sure that network permission
is set.
<uses-permission android:name="android.permission.INTERNET" />

XsensDotOtaSimpleManager.checkOtaUpdates (this, this, mXsDevice,

new XsensDotOtaSimpleCallback() {

@Override

public void onNewFirmwareVersion (String address, boolean has, int
requestCode) {

}
hp) g

Xse ns 32 WWW.XSENS.Ccom

4 Appendix
4.1 Real-time streaming modes

4.1.1 Extended (Quaternion)
Table 8: Extended (Quaternion)

Mode name ‘ Payload ‘ Available data ‘
e SampleTimeFine
PAYLOAD_TYPE_EXTENDED_QUATERNION = 36 bytes : Sr‘éaetizréggration
e Status

4.1.2 Complete (Quaternion)
Table 9: Complete (Quaternion)

‘ Mode name ‘ Payload ‘ Available data

e SampleTimeFine
32 bytes e Quaternion
e Free acceleration

PAYLOAD_TYPE_COMPLETE_QUATERNION

4.1.3 Orientation (Quaternion)
Table 10: Orientation (Quaternion)

Mode name Payload Available data

‘ PAYLOAD_TYPE_ORIENTATION_QUATERNION ‘ 20 bytes ‘ * SampleTimeFine ‘
Quaternion

4.1.4 Extended (Euler)
Table 11: Extended (Euler)

Mode name Payload Available data
SampleTimeFine

Euler
Free acceleration

[
PAYLOAD_TYPE_EXTENDED_EULER 32 bytes :
e Status

4.1.5 Complete (Euler)

Table 12: Complete (Euler)

Mode name ‘ Payload ‘ Available data
e SampleTimeFine
PAYLOAD_TYPE_COMPLETE_EULER 28 bytes e Euler

e Free acceleration

Xse ns 33 WWW.XSens.com

4.1.6 Orientation (Euler)
Table 13: Orientation (Euler)

Mode name ‘ Payload ‘ Available data
‘ PAYLOAD_TYPE_ORIENTATION_EULER ‘ 16 bytes ‘ E’S{Qf"eT'meF'”e ‘
4.1.7 Free acceleration
Table 14: Free acceleration
Mode name ‘ Payload ‘ Available data

e SampleTimeFine

PAYLOAD_TYPE_FREE_ACCELERATION ‘ 16 bytes ‘ -
Free acceleration

4.1.8 High fidelity (with mag)
Table 15: High fidelity (with mag)

Mode name ‘ Payload ‘ Available data

SampleTimeFine
dq

dv

Angular velocity
Acceleration
Magnetic field
Status

PAYLOAD_TYPE_HIGH_FIDELITY_WITH_MAG | 35 bytes

4.1.9 High fidelity

Table 16: High fidelity

Mode name Payload Available data

SampleTimeFine
dq

dv

Angular velocity
Acceleration
Status

PAYLOAD_TYPE_HIGH_FIDELITY_NO_MAG 29 bytes

4.1.10 Delta quantities (with mag)
Table 17: Delta quantities (with mag)

Mode name ‘ Payload Available data

e SampleTimeFine
PAYLOAD_TYPE_DELTA_QUANTITIES_WITH_MAG | 38 bytes : S\C/]

e Magnetic field

Xse ns 34 WWW.XSens.com

4.1.11 Delta quantities
Table 18: Delta quantities

Mode name ‘ Payload ‘ Available data

e SampleTimeFine
PAYLOAD_TYPE_DELTA_QUANTITIES_NO_MAG | 32 bytes e dq

e dv

4.1.12 Rate quantities (with mag)
Table 19: Rate quantities (with mag)

Mode name Payload Available data

e SampleTimeFine
PAYLOAD_TYPE_RATE_QUANTITIES_WITH_MAG @ 34 bytes e Angular velocity
e Acceleration

4.1.13 Rate quantities
Table 20: Rate quantities

Mode name ‘ Payload ‘ Available data

e SampleTimeFine
PAYLOAD_TYPE_RATE_QUANTITIES_NO_MAG 28 bytes e Angular velocity

e Acceleration

4.1.14 Custom mode 1

Table 21: Custom mode 1

Mode name Payload Available data

SampleTimeFine

[]
PAYLOAD_TYPE_CUSTOM_MODE_1 40 bytes * Eulerangle

e Free acceleration

[]

Angular velocity

4.1.15 Custom mode 2

Table 22: Custom mode 2

Mode name Payload Available data

e SampleTimeFine
e Euler angle

e Free acceleration
e Magnetic field

PAYLOAD_TYPE_CUSTOM_MODE_2 34 bytes

Xse ns 35 WWW.XSens.com

4.1.16 Custom mode 3
Table 23: Custom mode 3

Mode name ‘ Payload ‘ Available data

e SampleTimeFine
PAYLOAD_TYPE_CUSTOM_MODE_3 32 bytes e Quaternion
e Angular velocity

Xse ns 36 WWW.XSens.com

