

Xsens Technologies B.V. Xsens North America, Inc.

Pantheon 6a

P.O. Box 559

7500 AN Enschede

The Netherlands

phone +31 (0)88 973 67 00

fax +31 (0)88 973 67 01

e-mail info@xsens.com

internet www.xsens.com

10557 Jefferson Blvd,

Suite C

CA-90232 Culver City

USA

phone 310-481-1800

fax 310-416-9044

e-mail info@xsens.com

internet www.xsens.com

Document MV0305P, Revision N, Sept 2018

MVN real-time network streaming
Protocol Specification

mailto:info@xsens.com
mailto:info@xsens.com

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

ii

Revisions

Revision Date By Changes

E February 2012 DOS Updated for release MVN Analyze/Animate 3.3

F June 2013 AOD Updated for release MVN Analyze/Animate 3.5

G December 2013 CMO Updated for release MVN Analyze/Animate 3.5.2

H October 2014 JMU Updated for release MVN Analyze/Animate 4.0
(new HW + support for TCP protocol)

I November 2014 PVR Indicate more clearly which data types are used by
MotionBuilder, Maya and Unity3D

J February 2015 JMU Updated for MVN Analyze/Animate 4.1:
Additional datagrams for expanded network streaming
defined

K November 2017 HBE Updated naming for MVN 2018

L April 2018 EJO Updated documentation for scale information

M June 2018 JKO Updated Motion Tracker Kinematics

N September 2018 JMU Added finger tracking and updated header

© 2005-2018, Xsens Technologies B.V. All rights reserved. Information in this document is subject to
change without notice. Xsens, MVN, MotionGrid, MTi, MTi-G, MTx, MTw and Awinda are registered
trademarks or trademarks of Xsens Technologies B.V. and/or its parent, subsidiaries and/or affiliates in
The Netherlands, the USA and/or other countries. All other trademarks are the property of their
respective owners.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

iii

Table of Contents

1 INTRODUCTION .. 1

1.1 PERCEIVED USAGE ... 1
1.1.1 Usage in real-time previsualization and simulation VR setups .. 1
1.1.2 Network Streamer and Network monitor .. 1
1.1.3 Usage in multi-person or other complex motion capture setups ... 2

2 TRANSPORT MEDIUM ... 3

2.1 NETWORK ENVIRONMENT .. 3
2.2 NETWORK PROTOCOL ... 3
2.3 DEFAULT PORT ... 3
2.4 DATAGRAM ... 3

2.4.1 Header .. 4
2.5 POSE DATA .. 7

2.5.1 Data order ... 7
2.5.2 Segment data Euler (type 01) .. 7
2.5.3 Segment data quaternion (type 02) .. 7
2.5.4 Point position data (type 03) ... 8
2.5.5 Segment data Unity3D (type 05) .. 8
2.5.6 Position ... 9
2.5.7 Rotation (Euler) .. 9
2.5.8 Rotation (Quaternion) ... 9
2.5.9 Segment ID .. 9
2.5.10 Point ID ... 9
2.5.11 Float and integer values over the network .. 9
2.5.12 String values over the network .. 9

2.6 CHARACTER INFORMATION ... 10
2.6.1 Meta data (type 12) .. 10
2.6.2 Scale information (type 13) ... 10

2.7 ADDITIONAL INFORMATION .. 11
2.7.1 Joint Angles (type 20) .. 11
2.7.2 Linear Segment Kinematics (type 21) .. 11
2.7.3 Angular Segment Kinematics (type 22) ... 11
2.7.4 Motion Tracker Kinematics (type 23) .. 12
2.7.5 Center of Mass (type 24) ... 12
2.7.6 Time Code (type 25) .. 12

3 DATA TYPES .. 13

3.1 SEGMENTS .. 13

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

1

1 Introduction

MVN Analyze/Animate, developed by Xsens, is a tool to capture and compute the 6DOF motion data of
an inertial sensor-driven system. It allows the export of the data to third party applications such as Motion
Builder, making the data available to drive rigged characters in e.g. animations. The data transfer to
other applications is primarily file based when using MVN Analyze/Animate. With the XME API (SDK)
there are many other options.

In many situations it is attractive to keep the ease of use of MVN Analyze/Animate, while receiving the
motion capture data in real-time in another application, even on another PC possibly physically remote
from the MVN system.

This document defines a network protocol specification for this purpose. It describes the transport
medium, the given data and the datagrams to be sent and received over the network, as well as the
control sequences the server and clients will use to communicate states and requests during the
sessions. The network communication is mainly required to be fast/real-time, other quality criteria are
secondary.

This document describes MVN Analyze/Animate Real-time Network Streaming. The streaming feature
enables computers that run MVN Analyze/Animate to stream the captured data over a network to other
client computers.

1.1 Perceived Usage

1.1.1 Usage in real-time previsualization and simulation VR setups

Many software packages (e.g. MotionBuilder) and experimental VR rigs use single computers to do
specific processing and hardware interfacing tasks, such as driving motion platforms, real-time rendering
to a screen, or interfacing with a motion capture device. In this scenario, a PC set up with MVN
Analyze/Animate could service one (or more) motion captured persons. This requires immediate,
regularly timed delivery of state (pose) packets. The UDP protocol is most suitable for this task because
it delivers packets without congestion control and dropped packet checking. MVN Analyze/Animate real-
time network streaming protocol is based on UDP and is specified in this document.

To support scenarios like this for usage with 3rd party tools as a client application, Xsens has developed
several plug-ins. MVN Analyze/Animate plug-ins are available for Autodesk Motion Builder,
Autodesk Maya and Unity3D. These tools use protocols specified in this document to receive motion
capture data in real-time.

The client side plug-ins for MotionBuilder and Maya can be requested and purchased separately at
Xsens.
The Unity3D plug-in is available for free at: https://www.assetstore.unity3d.com/en/#!/content/11338
(Version: 1.0 (Apr 25, 2014), Size: 1.6 MB, this requires Unity 4.0.1 or higher)

1.1.2 Network Streamer and Network monitor

To send motions from MVN Analyze/Animate, go to Options > Preferences > Miscellaneous > Network
Streamer and choose the desired protocol. The motion can also be received by MVN Analyze/Animate
go to File > open Network Monitor. The Network Monitor will also show the local axis for each segment.
Also note that the red triangle in the origin is representing the x-axis.

https://www.assetstore.unity3d.com/en/#!/content/11338
https://www.assetstore.unity3d.com/en/

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

2

1.1.3 Usage in multi-person or other complex motion capture setups

In roll-your-own motion capture setups, often additional data is captured. An example could be medical
data, or data gloves. Another setup might capture multiple subjects at once. The TCP protocol would be
most suitable for this task as this protocol guarantees that the data stream is completely sent, potentially
at the expense of near real-time delivery. However UDP also suffices in a well-designed network setup
as there will be nearly no, or very little, packet loss.

Advantages for motion capture setup builders include:

 Not necessary to interface with XME API (SDK).

 Processing CPU time required for inertial motion capture is done on a separate PC, freeing up
resources for other processing;

 Calibration and real-time pre-viewing (e.g. for assessment of motion capture quality) can be
done on the processing PC using MVN Analyze/Animate itself.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

3

2 Transport Medium

2.1 Network Environment

The network environment will be assumed to be a local 100 Mbit Ethernet network, larger network
topologies are not considered and can be covered by file transfer of the already given file export
functionality or later extensions to the network protocol. Thus, few packet loss or data corruption during
transfer is to be expected, as well as constant connectivity.

2.2 Network Protocol

Network communication uses a protocol stack, thus the streaming protocol will be implemented on top
of a given set of protocols already available for the network clients. In this case, the layers to build upon
are IP and UDP (or TCP, which is also supported). IP (Internet Protocol, RFC 791) is the network layer

protocol used in Ethernet networks and defines the source and destination of the packets within the

network. Upon this, UDP (User Datagram Protocol, RFC 768) is used to encapsulate the data. The UDP

Protocol is unidirectional, and contrary to TCP (Transmission Control Protocol, RFC 793) it is stateless

and does not require the receiver to answer incoming packets. This allows greater speed.

2.3 Default Port

The default Port to be used on the network is 9763. This Port is derived from the XME API (9=X, M=6,
E=3). MVN Analyze/Animate server will default to this Port.

It is of course possible to define an arbitrary Port if needed.

2.4 Datagram

The motion capture data is sampled and sent at regular time intervals for which the length depends
upon the configuration of MVN Analyze/Animate. Common sampling rates lie between 60 and 240 Hertz.
The update rate of the real-time network stream can be modified separately. The data content in the
datagram is defined by the specific protocol set, but basically, the positions and rotation of all segments
of the body at a sampling instance are sent away as one or more UDP datagrams.

Each datagram starts with a 24-byte header followed by a variable number of bytes for each body
segment, depending on the selected data protocol. All data is sent in ‘network byte order’, which
corresponds to big-endian notation.

Framed text indicates items that are sent as part of the datagram.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

4

2.4.1 Header

The header contains the type of the data and some identification information, so the receiving end can
apply it to the right target.

Datagram header

6 bytes ID String
4 bytes sample counter
1 byte datagram counter
1 byte number of items
4 bytes time code
1 byte character ID
1 byte number of body segments – from MVN 2019
1 byte number of props – from MVN 2019
1 byte number of finger tracking data segments – from MVN 2019
2 bytes reserved for future use
2 bytes size of payload

2.4.1.1 ID String

The ID String is an ASCII string which consists of 6 characters (not terminated by a null character). It
serves to unambiguously identify the UDP datagram as containing motion data of the format according
to this specification. Since the values in the string are characters, this string is not converted to a big-
endian notation, but the first byte is simply the first character, etc.

These are the ASCII and hexadecimal byte values of the ID String:

ASCII M X T P 0 1
Hex 4D 58 54 50 30 31

M: M for MVN
X: X for Xsens
T: T for Transfer
P: P for Protocol

##: Message type. The first digit determines what kind of packet this is and the second digit determines
the format of the data in the packet

Message type Description

01 Pose data (Euler) ← MotionBuilder +Maya

 Absolute position and orientation (Euler) of segments

 Y-Up, right-handed

 This type is used by the Motion Builder + Maya plug-in

 Supported by MVN Analyze/Animate network monitor

02 Pose data (Quaternion) ← MVN Analyze/Animate Network Monitor

 Absolute position and orientation (Quaternion) of segments

 Default mode Z-Up, right-handed or Y-Up

 Supported by MVN Analyze/Animate network monitor

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

5

Message type Description

03 Pose data (Positions only, MVN Optical marker set 1)

 Positions of selected defined points (simulating optical markers), typically 38-
46 points. Multiple data sets are available.

 This datagram is used by the Motion Builder plug-in v1.0.

 Partially supported by MVN Analyze/Animate network monitor.
MVN Analyze/Animate has a limited ability to re-integrate these marker
positions into a character. The segment orientations will not be updated.
Therefore, when only this datagram is received, the resulting character can
appear incorrect.

04 Deprecated: MotionGrid Tag data

05 Pose data (Unity3D)

 Relative position and orientation (Quaternion) of segments

 Uses alternative segment order

 Left-handed for Unity3D protocol

 Supported by MVN Analyze/Animate network monitor

10 Deprecated, use 13: Character information scale information

11 Deprecated, use 13: Character information prop information

12 Character information meta data

 name of the character

 MVN character ID (BodyPack or Awinda Station ID)

 << more can be added later >>

 Supported by MVN Analyze/Animate network monitor

13 Character information scaling information, including prop and null-pose
Supported by MVN Analyze/Animate network monitor

20 Joint Angle data

 Joint definition and angles

 NOT supported by MVN Analyze/Animate network monitor.

21 Linear Segment Kinematics

 Absolute segment position, velocity and acceleration

 Partially supported by MVN Analyze/Animate network monitor.
MVN Analyze/Animate has a limited ability to re-integrate this data into a
character. The segment orientations will not be updated. Therefore, when only
this datagram is received, the resulting character can appear incorrect.

22 Angular Segment Kinematics

 Absolute segment orientation, angular velocity and angular acceleration

 Partially supported by MVN Analyze/Animate network monitor.
MVN Analyze/Animate has a limited ability to re-integrate this data into a
character. The segment positions will not be updated. Therefore, when only
this datagram is received, the resulting character can appear incorrect.

23 Motion Tracker Kinematics

 Absolute sensor orientation and free acceleration

 Sensor-local acceleration, angular velocity and magnetic field

 NOT supported by MVN Analyze/Animate network monitor.

24 Center of Mass

 Absolute position of center of mass

 NOT supported by MVN Analyze/Animate network monitor.

25 Time Code

 Time code string

 NOT supported by MVN Analyze/Animate network monitor.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

6

Please note that the message type is sent as a string, not as a number, so message type “03” is sent
as hex code 0x30 0x33, not as 0x00 0x03.

2.4.1.2 Sample Counter

The sample counter is a 32-bit unsigned integer value which is incremented by one, each time a new
set of motion tracker data is sampled and sent away. Note that the sample counter is not to be
interpreted as a time code, since the sender may skip frames.

2.4.1.3 Datagram Counter

The size of a UDP datagram is usually limited by the MTU (maximum transmission unit, approx. 1500
bytes) of the underlying Ethernet network. In nearly all cases the entire motion data that was collected
at one sampling instance will fit into a single UDP datagram. However, if the amount of motion data
becomes too large then the data is split up into several datagrams.

If motion data is split up into several datagrams then the datagrams receive index numbers starting at
zero. The datagram counter is a 7-bit unsigned integer value which stores this index number. The most
significant bit of the datagram counter byte is used to signal that this datagram is the last one belonging
to that sampling instance. For example, if motion data is split up into three datagrams then their
datagram counters will have the values 0, 1 and 0x82 (hexadecimal). If all data fits into one UDP
datagram (the usual case) then the datagram counter will be equal to 0x80 (hexadecimal).
The sample counter mentioned above can be used to identify which datagrams belong to the same
sampling instance because they must all carry the same sample counter value but different datagram
counters. This also means that the combination of sample counter and datagram counter values is
unique for each UDP datagram containing (part of the) motion data.

NOTE: For practical purposes this will not be an issue with the MVN streaming protocol. If problems are
encountered, check your MTU settings.

2.4.1.4 Number of items

The number of items is stored as an 8-bit unsigned integer value. This number indicates the number of
segments or points that are contained in the packet. Note that this number is not necessarily equal to
the total number of motion trackers that were captured at the sampling instance if the motion capture
data was split up into several datagrams. This number may instead be used to verify that the entire UDP
datagram has been fully received by calculating the expected size of the datagram and comparing it to
the actual size of the datagram.

2.4.1.5 Time code

MVN Analyze/Animate contains a clock which starts running at the start of a recording. The clock
measures the elapsed time in milliseconds. Whenever new captured data is sampled the current value
of the clock is sampled as well and is stored inside the datagram(s) as a 32-bit unsigned integer value
representing a time code.

2.4.1.6 Character ID

MVN Analyze/Animate supports multiple characters in one viewport. This byte specifies to which
character the data belongs. In a single-character setup this value will always be 0. In multi-character
cases, they will usually be incremental. However, especially during live streaming, one of the characters
may disconnect and stop sending data while others will continue, so the receiver should be able to
handle this.
Each character will send its own full packet.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

7

2.4.1.7 Number of body segments

This value contains the number of regular body segments of the character. In practice this value is
always 23. Note that when streaming something other than segment data, this value will still contain the
number of body segments (23).

2.4.1.8 Number of props

This value contains the number of prop segments streamed with the character (0-4). Note that when
streaming something other than segment data, this value will still contain the number of prop segments.

2.4.1.9 Number of finger tracking data segments

This value contains the number of finger tracking data segments streamed with the character, either 0
or 40. The value is for both hands combined. Note that when streaming something other than segment
data, this value will still contain the number of finger tracking data segments.

2.4.1.10 Reserved bytes for future use

The left-over bytes near the end of the datagram header are reserved for future versions of this protocol.

2.4.1.11 Payload size

The last 2 bytes contain the size of the payload, meaning the size of the datagram without the header.
This value can be used when an unknown datagram is received to skip its contents in a reliable way.

2.5 Pose data

2.5.1 Data order

When receiving data, items are sent in this order, non-existent items are skipped:

 Normal body segments

 Props

 Left hand finger tracking data

 Right hand finger tracking data

2.5.2 Segment data Euler (type 01)

This protocol was originally developed and optimized for the MotionBuilder and Maya plug-in.

Information about each segment is sent as follows.

4 bytes segment ID See 2.5.9
4 bytes x–coordinate of segment position
4 bytes y–coordinate of segment position
4 bytes z–coordinate of segment position
4 bytes x rotation –coordinate of segment rotation
4 bytes y rotation –coordinate of segment rotation
4 bytes z rotation –coordinate of segment rotation

Total: 28 bytes per segment

The coordinates use a Y-Up, right-handed coordinate system for Euler protocol.

See also 2.5.1 Data order.

2.5.3 Segment data quaternion (type 02)

This protocol reflects the internal format of MVN Analyze/Animate.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

8

Information about each segment is sent as follows.

4 bytes segment ID See 2.5.9
4 bytes x–coordinate of segment position
4 bytes y–coordinate of segment position
4 bytes z–coordinate of segment position
4 bytes q1 rotation – segment rotation quaternion component 1 (re)
4 bytes q2 rotation – segment rotation quaternion component 1 (i)
4 bytes q3 rotation – segment rotation quaternion component 1 (j)
4 bytes q4 rotation – segment rotation quaternion component 1 (k)

Total: 32 bytes per segment

The coordinates use a Z-Up, right-handed coordinate system.

See also 2.5.1 Data order.

2.5.4 Point position data (type 03)

Information about each point is sent as follows.
This data type is intended to emulate a Virtual (optical) Marker Set.

4 bytes point ID
this is 100x the segment ID + the point ID for a marker
this is the tagId for a tag
4 bytes x–coordinate of point position
4 bytes y–coordinate of point position
4 bytes z–coordinate of point position

Total: 16 bytes per point

The coordinates use a Y-Up, right-handed coordinate system.

2.5.5 Segment data Unity3D (type 05)

Information about each segment is sent as follows.

4 bytes segment ID See 2.5.9
4 bytes x–coordinate of segment position
4 bytes y–coordinate of segment position
4 bytes z–coordinate of segment position
4 bytes q1 rotation – segment rotation quaternion component 1 (re)
4 bytes q2 rotation – segment rotation quaternion component 1 (i)
4 bytes q3 rotation – segment rotation quaternion component 1 (j)
4 bytes q4 rotation – segment rotation quaternion component 1 (k)

Total: 32 bytes per segment.

The pelvis and prop segments use global positions and rotation, while the other segments only use local
rotation and relative positions. Segments follow pelvis position based on the character model hierarchy
within Unity3D.

Unity3D mode uses quaternion data, where the coordinates use a Y-Up, left-handed coordinate system.

A total of 23 segments will be sent. Props and finger tracking data are not supported.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

9

2.5.6 Position

The position of a captured segment is always stored as a 3D vector composed of three 32-bit float
values. The unit is cm.

2.5.7 Rotation (Euler)

The rotation of a captured segment in the Euler representation is always stored as a 3D vector
composed of three 32-bit float values. The unit is degrees.

2.5.8 Rotation (Quaternion)

The rotation of a captured segment in the Quaternion representation is always stored as a 4D vector
composed of four 32-bit float values. The quaternion is always normalized, but not necessarily positive-
definite.

2.5.9 Segment ID

The IDs of the segments are listed in paragraph 3.1. The segment ID is sent as a normal 4-byte integer.

2.5.10 Point ID

The ID of a point depends on the ID of the segment it is attached to and the local ID it has in the segment.
These local IDs are documented in the MVN User Manual. The ID is sent as a 4-byte integer, defined
as 256 * segment ID + local point ID.

Example:
The Sacrum point on the Pelvis segment has local ID 13, and the Pelvis has ID 1, so the ID of the point
is sent as 256*1 + 13 = 269.

2.5.11 Float and integer values over the network

All integer values mentioned above are stored in big-endian byte order inside the UDP datagrams with
the function htonl() into the network by MVN Analyze/Animate and ntohl() out in the client. In other words:
the most significant byte (MSB) is stored first. This is the same byte order that is used for other Internet
protocols, so standard conversion functions should be available on all computer systems.

2.5.12 String values over the network

Strings are utf-8 encoded. They are preceded by the size of the string as a 32-bit signed integer and
NOT 0-terminated.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

10

2.6 Character information

2.6.1 Meta data (type 12)

This packet contains some meta-data about the character. This is in a tagged format, each tag is
formatted as “tagname:” and each tagline is terminated by a newline. Each value is a string that can be
interpreted in its own way.
Defined tags are:
name: contains the name as displayed in MVN Analyze/Animate
xmid: contains the BodyPack/Awinda-station ID as shown in MVN Analyze/Animate
color: contains the color of the character as used in MVN Analyze/Animate, the format is hex RRGGBB

More tags may be added later, so any implementation should be able to skip unknown and unused tags.
This packet may contain different tags each time to reduce network load. The order of the tags can vary
from packet to packet.

2.6.2 Scale information (type 13)

This packet contains scaling information about the character.
The scaling information is provided as known key points of the character standing in a perfect/ideal
Tpose, where all segment orientations are set to identity.

The data sent per item for each packet is:

4 bytes: segment count (S)
S times:
 - string: name of segment
 - 3x4 bytes: x,y,z coordinates of the origin of the segment in global space
4 bytes: point count (P)
P times:
 - 2 bytes: segment ID of the point
 - 2 bytes: point ID of the point in this segment
 - string: name of the point
 - 4 bytes: unsigned integer containing flags describing the point’s characteristics
 - 3x4 bytes: x,y,z coordinates of the point relative to the segment origin in the null pose

Total: unknown

Typically multiple packets of this type are sent to provide the full scaling information.
The separation is done to allow successful communication on networks with typical packet size
limitations.
The first packet in a sequence will contain just the segments and will set the point count to 0.
Following this will be packets with the segment count set to 0 and the point count set to a non-0 value.
These packets will define a subset of the available points. At the time of writing there are about 123
points defined. Combining the information in the 'point' packets will give the full set of available points.

The coordinates use a Z-Up, right-handed coordinate system.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

11

2.7 Additional Information

These datagrams provide additional data, but do not by themselves define a full pose.

2.7.1 Joint Angles (type 20)

Information about each joint is sent as follows.

4 bytes point ID of parent segment connection. See 2.5.10
4 bytes point ID of child segment connection. See 2.5.10
4 bytes floating point rotation around segment x–axis
4 bytes floating point rotation around segment y–axis
4 bytes floating point rotation around segment z–axis

Total: 20 bytes per segment

The coordinates use a Z-Up, right-handed coordinate system.

2.7.2 Linear Segment Kinematics (type 21)

Information about each segment is sent as follows.

4 bytes segment ID See 2.5.9
4 bytes x–coordinate of segment position
4 bytes y–coordinate of segment position
4 bytes z–coordinate of segment position
4 bytes x component of segment global velocity
4 bytes y component of segment global velocity
4 bytes z component of segment global velocity
4 bytes x component of segment global acceleration
4 bytes y component of segment global acceleration
4 bytes z component of segment global acceleration

Total: 40 bytes per segment

The coordinates use a Z-Up, right-handed coordinate system.
See also 2.5.1 Data order.

2.7.3 Angular Segment Kinematics (type 22)

Information about each segment is sent as follows.

4 bytes segment ID See 2.5.9
4 bytes q1 rotation – segment rotation quaternion component 1 (re)
4 bytes q2 rotation – segment rotation quaternion component 1 (i)
4 bytes q3 rotation – segment rotation quaternion component 1 (j)
4 bytes q4 rotation – segment rotation quaternion component 1 (k)
4 bytes x component of segment global angular velocity
4 bytes y component of segment global angular velocity
4 bytes z component of segment global angular velocity
4 bytes x component of segment global angular acceleration
4 bytes y component of segment global angular acceleration
4 bytes z component of segment global angular acceleration

Total: 44 bytes per segment

The coordinates use a Z-Up, right-handed coordinate system.
See also 2.5.1 Data order.

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

12

2.7.4 Motion Tracker Kinematics (type 23)

Information about each motion tracker is sent as follows.

4 bytes segment ID to which the tracker is attached See 2.5.9
4 bytes q1 rotation – segment rotation quaternion component 1 (re)
4 bytes q2 rotation – segment rotation quaternion component 1 (i)
4 bytes q3 rotation – segment rotation quaternion component 1 (j)
4 bytes q4 rotation – segment rotation quaternion component 1 (k)
4 bytes x–coordinate of tracker global free acceleration
4 bytes y–coordinate of tracker global free acceleration
4 bytes z–coordinate of tracker global free acceleration
4 bytes x component of segment local magnetic field
4 bytes y component of segment local magnetic field
4 bytes z component of segment local magnetic field

Total: 44 bytes per segment.

Only data for segments with a tracker is sent. So it’s important to check the segment ID for this datagram.

The coordinates use a Z-Up, right-handed coordinate system.

2.7.5 Center of Mass (type 24)

Information about the center of mass is sent as follows.

4 bytes x–coordinate of center of mass position

4 bytes y–coordinate of center of mass position

4 bytes z–coordinate of center of mass position

Total: 12 bytes

The coordinates use a Z-Up, right-handed coordinate system.

2.7.6 Time Code (type 25)

Information about time code is sent as follows.

12 byte string formatted as such HH:MM:SS.mmm

Total: 12 bytes

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

13

3 Data Types

3.1 Segments

Segments are internally addressed by a 0-based index. In some cases they are referred to by ID, which
by definition is the index + 1.

Table 1: Euler and Quaternion protocols

Segment Name Segment Index

Pelvis 0

L5 1

L3 2

T12 3

T8 4

Neck 5

Head 6

Right Shoulder 7

Right Upper Arm 8

Right Forearm 9

Right Hand 10

Left Shoulder 11

Left Upper Arm 12

Left Forearm 13

Left Hand 14

Right Upper Leg 15

Right Lower Leg 16

Right Foot 17

Right Toe 18

Left Upper Leg 19

Left Lower Leg 20

Left Foot 21

Left Toe 22

Prop1 24

Prop2 25

Prop3 26

Prop4 27

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

14

Table 2: Euler and Quaternion protocols finger tracking data additional segments

Finger Tracking Segment Name Left Hand Index Right Hand Index

Carpus 23 + Prop Count 43 + Prop Count

First Metacarpal Carpus + 1 Carpus + 1

First Proximal Phalange Carpus + 2 Carpus + 2

First Distal Phalange Carpus + 3 Carpus + 3

Second Metacarpal Carpus + 4 Carpus + 4

Second Proximal Phalange Carpus + 5 Carpus + 5

Second Middle Phalange Carpus + 6 Carpus + 6

Second Distal Phalange Carpus + 7 Carpus + 7

Third Metacarpal Carpus + 8 Carpus + 8

Third Proximal Phalange Carpus + 9 Carpus + 9

Third Middle Phalange Carpus + 10 Carpus + 10

Third Distal Phalange Carpus + 11 Carpus + 11

Fourth Metacarpal Carpus + 12 Carpus + 12

Fourth Proximal Phalange Carpus + 13 Carpus + 13

Fourth Middle Phalange Carpus + 14 Carpus + 14

Fourth Distal Phalange Carpus + 15 Carpus + 15

Fifth Metacarpal Carpus + 16 Carpus + 16

Fifth Proximal Phalange Carpus + 17 Carpus + 17

Fifth Middle Phalange Carpus + 18 Carpus + 18

Fifth Distal Phalange Carpus + 19 Carpus + 19

 Document MV0305P.N

© Xsens Technologies B.V. MVN Analyze/Animate real-time network streaming

15

Table 3: Unity3D protocol

Segment Name Segment Index

Pelvis 0

Right Upper Leg 1

Right Lower Leg 2

Right Foot 3

Right Toe 4

Left Upper Leg 5

Left Lower Leg 6

Left Foot 7

Left Toe 8

L5 9

L3 10

T12 11

T8 12

Left Shoulder 13

Left Upper Arm 14

Left Forearm 15

Left Hand 16

Right Shoulder 17

Right Upper Arm 18

Right Forearm 19

Right Hand 20

Neck 21

Head 22

Prop1-4 24-27

