

Document MT1601P, Revision 2020.A, Jun 2020

Hardware Integration Manual

MTi 600-series

Revision	Date	Ву	Changes
A	9 sept 2019	RGI	Initial release
В	Nov 2019	AKO	Xsens brand update
С	Mar 2020	AKO	Updated recommended mounting parts
2020.A	Jun 2020	WBO	Added information for MTi-680G

© 2005-2020, Xsens Technologies B.V. All rights reserved. Information in this document is subject to change without notice. Xsens, Xsens DOT, MVN, MotionGrid, MTi, MTi-G, MTx, MTw, Awinda and KiC are registered trademarks or trademarks of Xsens Technologies B.V. and/or its parent, subsidiaries and/or affiliates in The Netherlands, the USA and/or other countries. All other trademarks are the property of their respective owners.

Table of Contents

1	Ge	eneral information6
2	In	terfaces7
	2.1	Pin Configuration
	2.2 2.2 2.2 2.2 2.2	9.2 RS232
	2.3	GNSS receiver interface10
	2.4	RTCM corrections interface11
	2.5	SYNC
3	Ele	ectrical Specifications13
	3.1	Supply voltage
	3.2	Power consumption
	3.3	I/O pins14
4	De	esign15
	4.1	Sensor reference frames15
	4.2	Origin of measurements16
	4.3 4.3 4.3	
	4.4 4.4 4.4	.1 Cables
	4.5 4.5 <i>4.5</i>	
	4.6 4.6 4.6	5
5	Ра	ckaging information24
	5.1	MTi 600-series module24
	5.2	MTi-680G25

List of Tables

Table 1: MTi product documentation overview	. 6
Table 2: Pin descriptions	. 7
Table 3: Pin descriptions MTi-680G Host Interface	. 8
Table 4: Pin descriptions MTi-680G RTCM corrections	. 8
Table 5: Host communication interfaces specifications	
Table 6: GNSS receiver interface specifications	11
Table 7: RTCM input port baud rates	11
Table 8: Supply voltage specifications	13
Table 9: Power consumption specifications	13
Table 10: I/O interface specifications	
Table 11: Recommended mating/mounting parts	17
Table 12: Recommended mating/mounting parts	18
Table 13: Recommended mating/mounting parts	19
Table 14: Connector pinning Host Interface cable assembly	
Table 15: Recommended mating parts for 12-pins Molex connector	21
Table 16: Connector pinning RTCM cable assembly	
Table 17: Recommended mating parts for 4-pins Molex connector	22
Table 17: Required antenna specifications for MTi-680G	22

List of Abbreviations

The MT Family Reference Manual $^{\rm 1}$ provides a list of abbreviations used across our MT documentation.

List of Figures

	in configuration of the MTi-600 module7 Nn configuration of the MTi-680G8
Figure 3: D	Data transmit behaviour under CTS10
Figure 4: R	RTS behaviour during data reception10
Figure 5: C	Connections for the GNSS interface11
	Connections for the RTCM corrections interface12
Figure 7: D	Default sensor coordinate system for the MTi 600-series module
Figure 8: D	Default sensor coordinate system for the MTi-680G15
Figure 9: Lo	ocation origin of measurements module (dimensions in mm)16
Figure 10:	Location origin of measurements MTi-680G (dimensions in mm)16
Figure 11:	Connection options (left: PCB, right: standalone, dimensions in mm)17
Figure 12:	Layout footprint example (dimensions in mm)17
Figure 13:	Standalone mounting hole positions (dimensions in mm)
	MTi-680G connector and mounting hole positions (dimensions in mm)19

¹The latest available documentation can be found in your MT Software Suite installation folder or via the following link: <u>https://xsens.com/xsens-mti-documentation</u>

Figure 15: MTi-680G mounting example (dimensions in mm)	19
Figure 16: Host Interface cable length definition	20
Figure 17: Numbering 12-pin connectors; left Molex (cable entry view), right ODU	(solder
cup view).	21
Figure 18: RTCM cable length definition	21
Figure 19: Numbering 4-pin connectors; left Molex (cable entry view), right ODU ((solder
cup view).	22

1 General information

This document provides hardware design instructions for the MTi 600-series module (MTi-600) and MTi-680G. The MTi-600 is a fully functional, self-contained module that is easy to design-in with limited external hardware components to be added. The MTi-600 can be embedded in an application by mounting it directly on a PCB or as a standalone module by connecting it via a flat-ribbon cable. The MTi-600 can be connected to a host through RS232, CAN or UART interfaces. Whereas the MTi-680G is a rugged device with integrated RTK GNSS receiver.

The *MTi 600-series Datasheet*³ provides information on the usage and technical details of the MTi 600-series modules and MTi-680G.

The *MTi Family Reference Manual*¹ supplements this document. It reports generic information on the MTi 1-series and MTi 600-series, such as output definitions, algorithm details and installation tips.

For testing and prototyping, Xsens provides the MTi-630 and MTi-670 Development Kits (MTi-630-DK and MTi-670-DK). In addition to the RS232, CAN and UART pin connectors of the MTi 600-series module, the Development Kit offers a direct USB, RS232, RS422 and CAN interface. The MTi-680G SK is a Starter Kit with cables and a USB converter included. Technical details of the Development Kit and Starter kit and its usage can be found in the *MTi* 600-series DK User Manual¹.

The *MT Low Level Communication Protocol*¹ document provides a complete reference for the protocols used to communicate with Xsens Motion Trackers on low-level basis. The MT Low Level Communication Protocol document also describes the synchronization messages and settings in detail.

Table 1 summarizes all available official documents for the Xsens MTi product line.

MTi 1-series	MTi 600-series	MTi 10/100-series			
MTi Family Ref					
MTi 1-series Datasheet	MTi 600-series Datasheet				
MTi 1-series DK User Manual	MTi 600-series DK User				
MIT I-Selles DK Osel Malida	Manual	MTi User Manual			
	MTi 600-series HW				
MTi 1-series HW Integration	Integration Manual				
Manual	MT CAN protocol				
	Documentation				
MT Manager Manual					
Magnetic Calibration Manual					
MT Low Level Communication Protocol Documentation					
Firmware Updater User Manual					

2 Interfaces

2.1 Pin Configuration

Figure 1 shows the pin configuration of the MTi 600-series module.

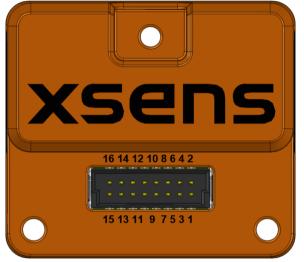


Figure 1: Pin configuration of the MTi-600 module

Table 2 shows the pin descriptions of the MTi 600-series module.

Pin	Name	I/O type	Description
1	VIN	PWR	Power input
2	GND	PWR	Ground
3	CAN_H	I/O	CAN bus differential high side
4	CAN_L	I/O	CAN bus differential low side
5	RS232_TxD	0	RS232 transmitter output to host
6	RS232_RTS	0	RS232 Ready To Send output to host
7	RS232_RxD	I	RS232 receiver input from host
8	RS232_CTS	I	RS232 Clear To Send input from host
9	SYNC_IN1	I	Multifunctional synchronization input
10	SYNC_IN2	I	Multifunctional synchronization input
11	GNSS_TxD	0	RS232 transmitter output to GNSS module
12	GNSS_RxD	I	RS232 receiver input from GNSS module
13	SYNC_OUT	0	Configurable synchronization output
14	GND	PWR	Ground
15	UART_TxD	0	UART transmitter output
16	UART_RxD	I	UART receiver input

Table 2: Pin descriptions

Figure 2: Pin configuration of the MTi-680G

Table 3 shows the pin descriptions of the MTi-680G Host Interface connector.

Pin	Name	I/O type	Description
1	CAN_H	I/O	CAN bus differential high side
2	CAN_L	I/O	CAN bus differential low side
3	SYNC_IN1	I	Multifunctional synchronization input
4	SYNC_IN2	I	Multifunctional synchronization input
5	VIN	PWR	Power input
6	RS232_CTS	I	RS232 Clear To Send input from host
7	RS232_RxD	I	RS232 receiver input from host
8	RS232_TxD	0	RS232 transmitter output to host
9	RS232_RTS	0	RS232 Ready To Send output to host
10	GND	PWR	Ground
11	SYNC_OUT	0	Configurable synchronization output
12	GND	PWR	Ground

Table 3: P	in descriptions	MTi-680G	Host Interface
------------	-----------------	----------	----------------

Table 4 shows the pin descriptions of the MTi-680G RTCM corrections connector.

Table 4: Pin descriptions MTi-680G RTCM corrections

Pin	Name	I/O type	Description
1	V_BCKP	PWR	Backup supply for GNSS (3V3).
2	GND	PWR	Ground
3	RTCM_RxD	Ι	RS232 receiver input from host
4	RTCM_TxD	0	RS232 transmitter output to host

2.2 Communication to host

The MTi-600 is designed to be used as a peripheral device in embedded systems or as a standalone unit. The MTi-600 supports Controller Area Network (CAN) and RS232 protocols for the communication between the MTi-600 and a host. The module supports an additionally Universal Asynchronous Receiver/Transmitter (UART). See Table 5 for interface specifications. For the physical connection recommendations, see section 4.3.

Table 5: Host communication	interfaces specifications
-----------------------------	---------------------------

Interface	Symbol	Min	Тур	Max	Units	Description
CAN	f _{CAN}	10.0	250.0	1000	kbps	Host CAN Interface Baud Rate
RS232	f _{RS232}	4.8	115.2	1000	kbps	Host RS232 Interface Baud Rate
UART ²	f _{UART}	4.8	115.2	2000	kbps	Host UART Interface Baud Rate

A USB and RS422 interface is possible through a UART to USB/RS422 converter (see example in the MTi 600-series Development Kit).

At its core, the MTi uses the Xsens-proprietary Xbus protocol which is compatible with all Xsens Motion Tracker products. This protocol is available on all interfaces, UART, RS232 and CAN.

The *MT Low Level Communication Protocol Documentation* is a complete reference for the protocol³.

2.2.1 CAN

The CAN interface of the MTi-600 does not include a termination resistor; it can be used in a CAN bus that already incorporates the required termination. If used in a single device connection, a 120 Ω termination resistor needs to be added between the CAN_H and CAN_L pins.

For more information please review the MT CAN Protocol Documentation³.

2.2.2 RS232

The RS232 interface complies with the standard RS232 voltage levels. It includes hardware flow control through RTS and CTS lines.

The RTS signal is an output of the MTi-600. If the RTS line is low, the module is busy and unable to receive new data. Otherwise, the module's UART is idle and ready to receive. The CTS signal is an input for the MTi-600. The module checks the state of the CTS line at the start of every byte it transmits. If CTS is high, the module transmits the byte. Otherwise, it postpones transmission until CTS is raised. If flow control is not used the CTS input should be connected to a logic high to make sure that the MTi-600 can transmit data. A RS232 logic high voltage should be between +3 V and +25 V.

³ Links to the latest available documentation can be found via the following link: <u>Xsens MTi</u> <u>Documentation</u>

² Not available on MTi-680G.

The CTS signal is an input for the module. The module checks the state of the CTS line at the start of every byte it transmits. If CTS is high, the module transmits the byte. Otherwise, it postpones transmission until CTS is raised. When during the transmission of a byte the user lowers the CTS signal, then the module completes transmission of that byte before postponing further output. The module will not retransmit this byte. Figure 3 shows the behaviour of the TX and CTS lines.

CTS						
тх	start	Byte N	stop/	start	Byte N+1	stop/

Figure 3: Data transmit behaviour under CTS

The RTS signal is an output of the module. If the RTS line is low, the module is busy and unable to receive new data. Otherwise, the module's UART is idle and ready to receive. After receiving a byte the direct memory access (DMA) controller of the module will transfer the byte to its receive first-in-first-out (FIFO) buffer. The module will pull down the RTS signal during this transfer. Therefore, with every byte received, the module lowers the RTS line shortly. Figure 4 shows this behaviour.

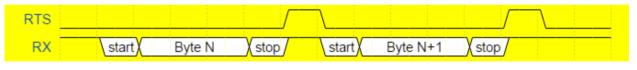


Figure 4: RTS behaviour during data reception

The user can use this communication mode without hardware flow control. In this case, the user must tie the CTS line high (e.g. VIN) to make the module transmit.

2.2.3 UART

The UART interface can be used to directly connect to an MCU with 3.3 V IO-levels. The user can configure the MTi 600-series module to communicate over UART. The UART frame configuration is 8 data bits, no parity and 1 stop bit (8N1). The UART protocol only has the TX and RX lines without any flow control. The UART interface is not available on the MTi-680G.

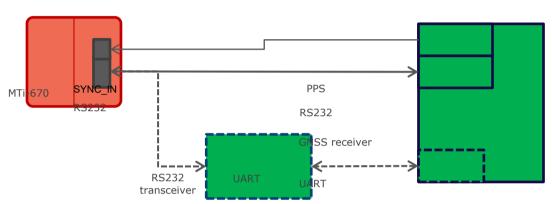
2.3 GNSS receiver interface

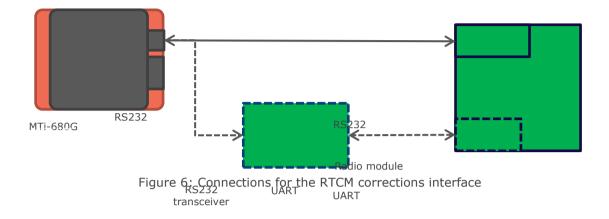
The MTi-670 variant of the MTi 600-series module family supports external inputs from a GNSS receiver, such as the uBlox MAX-M8 GNSS receiver. For the GNSS receiver, the RS232 or UART communication pins of the receiver need to be connected to the GNSS_TxD and GNSS_RxD pins of the MTi-670 module. In case of a UART interface on the GNSS receiver an additional RS232 transceiver should be connected in-between the MTi-600 and the GNSS receiver. See Figure 5 for connection details and Table 6 for interface specifications.

The PPS/TIMEPULSE output of the GNSS receiver should be connected to either one of the SYNC inputs of the MTi-600. The used SYNC input needs to be configured in software accordingly. Under default configurations, the PPS/TIMEPULSE output should be connected to SYNC_IN1

Interface	Symbol	Тур	Max	Units	Description
RS232	f _{GNSS}	115.2	1000	kbps	GNSS Interface Baud Rate

Table 6: GNSS receiver interface specifications




Figure 5: Connections for the GNSS interface

2.4 RTCM corrections interface

The MTi-680G variant of the MTi 600-series family supports RTCM correction inputs from an external device (e.g. radio module). This input can be found on the 4-pin connector and uses RS232 levels. In case of a UART interface on the radio module an additional RS232 transceiver should be connected in-between the MTi-680G and the radio module. See Figure 6 for connection details and Table 7 for interface specifications.

baud rate [bit/s]
38k4 (default)
57k6
115k2
230k4
460k8
921k6

2.5 SYNC

The MTi-600 has two multifunctional synchronization inputs and one synchronization output. The electrical specifications can be seen in Table 10. Refer to the *MTi 600-series Datasheet*⁴ for configuration details.

⁴ Links to the latest available documentation can be found via the following link: <u>Xsens MTi</u> <u>Documentation</u>

3 Electrical Specifications

This section lists the recommended electrical operating conditions for the MTi-600 series module.

3.1 Supply voltage

The MTi-600 series module has a single supply pin that can be supplied with a voltage within the range specified in Table 8. The MTi-680G has an additional backup voltage input for the GNSS module to support a warm start. The input supply range of the backup voltage is also specified in Table 8.

Table 8:	Supply	voltage	specifications
----------	--------	---------	----------------

Symbol	Min	Тур	Max	Unit	Description
VIN	4.5	5.0	24	V	Power input voltage
V _{BCKP} ⁵	1.7	3.0	3.6	V	GNSS backup input voltage

3.2 Power consumption

The power consumption of an MTi 600-series module depends, among others, on the input voltage, sample rate and communication protocol. Table 9 shows some typical power consumption values for different MTi-600 types.

	Тур	Unit	Conditions
MTi-630	320	mW	5V, UART, measurement mode, 400Hz, 921.6 kbps
MTi-630	350	mW	5V, RS232, measurement mode, 400Hz, 921.6 kbps
MTi-630	495	mW	24V, UART, measurement mode, 400Hz, 921.6 kbps
MTi-630	525	mW	24V, RS232, measurement mode, 400Hz, 921.6 kbps
MTi-670	310	mW	5V, UART, measurement mode, 400Hz, 921.6 kbps
MTi-670	340	mW	5V, RS232, measurement mode, 400Hz, 921.6 kbps
MTi-670	495	mW	24V, UART, measurement mode, 400Hz, 921.6 kbps
MTi-670	530	mW	24V, RS232, measurement mode, 400Hz, 921.6 kbps
MTi-680G	720	mW	5V, RS232, measurement mode, 400Hz, 921.6 kbps
MTi-680G	1000	mW	24V, RS232, measurement mode, 400Hz, 921.6 kbps

Table 9: Power consumption specifications

⁵ Only available on MTi-680G.

3.3 I/O pins

The I/O interface specifications are listed in Table 10.

I/O interface	Symbol	Min	Тур	Max	Unit	Description
CAN	V _{I(DIFF)(R)}	-4.0		0.5	V	Recessive differential input voltage $-12V < V_{(CANH, CANL)} < +12V$
	V _{I(DIFF)(D)}	0.9		9.0	V	Dominant differential input voltage -12V < $V_{(CANH, CANL)}$ < +12V
	V _{O(DIFF)(R)}	-500	0	50	mV	Recessive differential output voltage
	V _{O(DIFF)(D)}	1.3	2.0	5.0	V	Dominant differential output voltage
	V _{O(L)(D)}	0.5	1.5	2.25	V	CAN_L dominant output voltage
	V _{O(H)(D)}	2.75	3.5	4.5	V	CAN_H dominant output voltage
RS232 ⁶	VIL	-25		0.6	V	Low input voltage
(GNSS/RTCM)	V _{IH}	2.4		+25	V	High input voltage
	Vot	±5	±5.4		V	Driver Output Voltage swing
UART ⁷	V _{IL}	0		0.88	V	Low input voltage
	VIH	2.29		3.6	V	High input voltage
	V _{OL}	0		0.44	V	Low output voltage
	Voн	2.6		3.3	V	High output voltage
SYNC_IN1/	V _{IL}	-25		0.6	V	Low input voltage
SYNC_IN2	VIH	2.4		+25	V	High input voltage
SYNC_OUT	V _{OL}	0		0.44	V	Low output voltage
	V _{OH}	2.6		3.3	V	High output voltage

Table 10: I/O interface specifications

 $^{\rm 6}$ Also applies to the GNSS (module) and RTCM (MTi-680G) ports. $^{\rm 7}$ Not available on MTi-680G.

4 Design

This section describes the (mechanical) design and hardware integration considerations of the MTi 600-series module. 3D models of the module and MTi-680G are available and can be downloaded online:

https://base.xsens.com/hc/en-us/articles/360023863393

4.1 Sensor reference frames

The MTi 600-series module uses a right-handed coordinate system as the basis of the sensor frame. The default sensor coordinate system is printed on the side of the MTi and is shown in Figure 7. More details regarding (the modification of) the reference frames of the MTi can be found in the *MTi 600-series Datasheet*⁸ and *MTi Family Reference Manual*⁸.

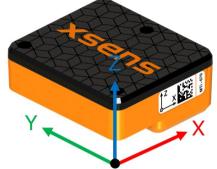


Figure 7: Default sensor coordinate system for the MTi 600-series module

Figure 8 shows the default sensor coordinate system of the MTi-680G.

Figure 8: Default sensor coordinate system for the MTi-680G

⁸ Links to the latest available documentation can be found via the following link: <u>Xsens MTi</u> <u>Documentation</u>

4.2 Origin of measurements

The accelerometer determines the origin of measurements. The \odot in Figure 9 and Figure 10 shows the location of the accelerometer of the MTi 600-series module.

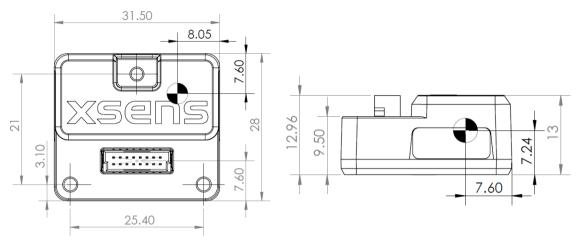


Figure 9: Location origin of measurements module (dimensions in mm)

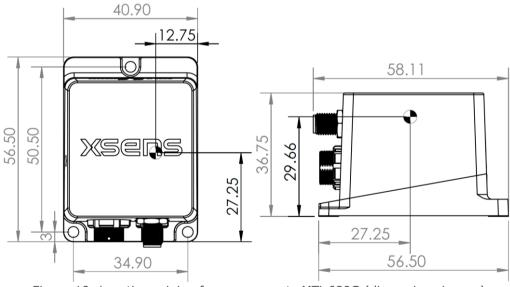


Figure 10: Location origin of measurements MTi-680G (dimensions in mm)

4.3 Physical connections Module

The connector on the MTi-600 series module is a 16 pins, 1.27 mm pitch male connector of Phoenix Contact (FP 1,27/ 16-MV 1,75 – 1714936). This connector supports an SMD counterpart that can be soldered onto a PCB as well as a ribbon cable (IDC) counterpart. In order to mount the MTi-600 onto a PCB, the connector should be facing down and the MTi-600 housing should be supported with M2 spacers that can be soldered onto the PCB. When using a ribbon cable the MTi-600 can be mounted upside-down to create easy access to the connector.

Figure 11 shows both mounting options. In both cases, the MTi-600 is fixated with three M2 screws with a length of at least 12mm. It is recommended to use screws and spacers with weak magnetic properties to reduce the influence on the internal magnetometer.

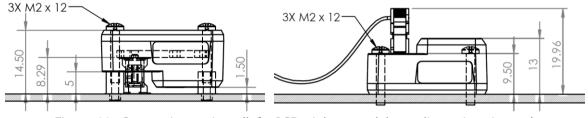
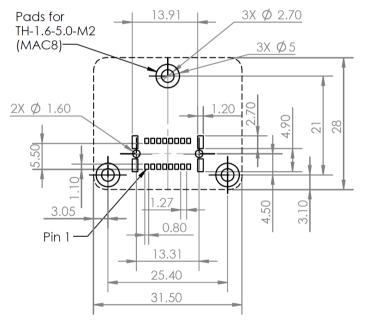



Figure 11: Connection options (left: PCB, right: standalone, dimensions in mm)

4.3.1 Footprint for PCB layout

Figure 12 shows the recommended footprint of the MTi-600 counterpart connector together with the three spacers. Table 11 shows the recommended parts for this mounting option.

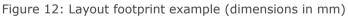


Table 11: Recommended mating/mounting parts

Part	Manufacturer + part number	Description
SMD	Phoenix Contact: 1714892	To be used in combination with 5 mm spacers
connector	(FP 1,27/ 16-FV 6,25)	(shown in Figure 11)
	Phoenix Contact: 1715000	To be used in combination with 8 mm spacers
	(FP 1,27/ 16-FV 9,05)	
PCB	MAC8: TH-1.6-5.0-M2	M2 x 5 mm, recommended
spacers	Würth Elektronik: 9774050243R	M2 x 5 mm, alternative
Screws		Brass, M2 x 12 mm

4.3.2 Footprint for standalone mounting

Figure 13 shows the mounting hole positions for the MTi-600 when mounted upside-down for the IDC connection. Table 12 shows the recommended parts for this mounting option.

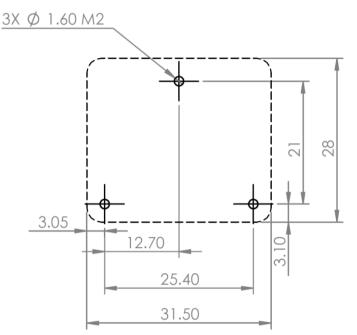


Figure 13: Standalone mounting hole positions (dimensions in mm)

Part	Manufacturer + part number	Description
IDC connector	Phoenix Contact: 1714903 (FP 1,27/ 16-FWL)	Single IDC connector
	Phoenix Contact: 1010258/P/xxx (FP 1,27/ 16-FWL-10/P/xxx)	Cable assembly with one IDC connector; replace xxx with cable length in m (0.05 – 0.95)
	Phoenix Contact: 1010251/P/xxx (FP 1,27/ 16-FWL-11/P/xxx)	Cable assembly with two IDC connectors; replace xxx with cable length in m (0.05 – 0.95)
Screws		Brass, M2 x 12 mm

At <u>www.phoenixcontact.com</u> pre-assembled cables can ordered, see Figure 13 for exact part numbers.

4.4 Physical connections MTi-680G

The MTi-680G only supports wire connectors. It has three different connectors: a 12-pin ODU connector for main supply and communication, a 4-pin ODU connector for RTCM and a SMA connector for the GNSS antenna. The MTi-680G has three (M3) mounting holes to

mount it on a flat service. Figure 14 shows the connector and mounting hole positions on the MTi-680G.

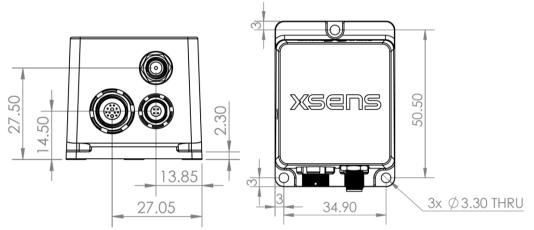


Figure 14: MTi-680G connector and mounting hole positions (dimensions in mm)

Figure 15 shows an example of the MTi-680G mounted on a surface.

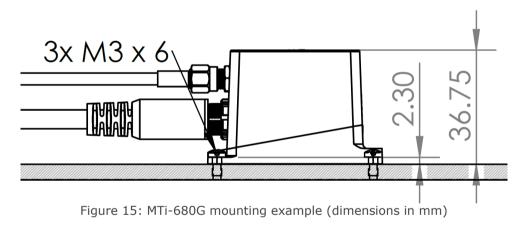


Table 13: Recommended mating/mounting parts

Part	Manufacturer	Part number	Description
Host Interface	ODU	A10WAM-P12XMM0-0000	AMC HD, break-away, 12 circuits
connector	ODU	C10WAM-P12XMM0-0000	AMC HD, screw lock, 12 circuits
RTCM	ODU	A1CWAM-P04XBC0-0000	AMC HD, break-away, 4 circuits
connector	ODU	C1CWAM-P04XBC0-0000	AMC HD, screw lock, 4 circuits
SMA	Tallysman	TW8889	Recommended GNSS antenna
connector	-		
Screws			Brass, M3 x 6 mm

4.4.1 Cables

The following cables can be ordered from Xsens.

CA-MP-MTI-12

The CA-MP-MTI-12 is the 12-pin Host Interface cable that consists of the following parts:

- Molex connector: 5054321201; 1.25mm pitch, dual row, positive lock, 12 circuits
- ODU connector: A10WAM-P12XMM0-0000; AMC HD, break-away plug, 12 circuits
- Cable: 2.9 m, 12 core, AWG28, shielded, UL, -40°C +85°C
- Molex crimp terminals: 5054311100; gold (Au) plating, 26-30 AWG

Table 16 shows the pinning of the connections. The shield of the cable is only connected on the ODU connector side.

Function (MTi)	Wire colour	Wire number	Molex pin no.	ODU pin no.
VIN	Red	5	1	5
GND	Black	6	2	10
CAN_H	Green	1	3	1
CAN_L	White	2	4	2
RS232_TxD	Yellow	9	5	8
RS232_RTS	Violet	10	6	9
RS232_RxD/SYNC_IN3	Grey	8	7	7
RS232_CTS/SYNC_IN4	Orange	7	8	6
SYNC_IN1/ODO_1A	Black/White	3	9	3
SYNC_IN2/ODO_1B	Red/White	4	10	4
SYNC_OUT	Blue/White	11	11	11
GND	Blue	12	12	12
SHIELD	-	-	-	SH

Table 14: Connector pinning Host Interface cable assembly

Figure 16 shows the cable length definition (from connector end-to-end). Figure 17 shows the pinning of both the Molex connector and the ODU connector. Table 15 shows the recommended mating parts for the Molex connector.

Figure 16: Host Interface cable length definition

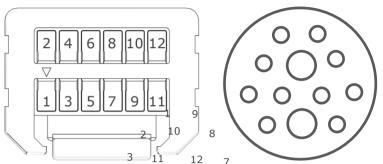


Figure 17: Numbering 12-pin connectors; left Molex (cable entry view), right ODU (solder cup view).6 4

Table 15: Recommended mating parts for 12-pins Molex connector

Part number	Manufacturer	Mounting	Description
5054331291	Molex	Vertical	1.25mm Pitch, Micro-Lock Plus PCB
5054481291	Molex	Right-Angle	Header, Dual Row, Surface Mount, 0.10µm Gold Plating, 12 Circuits

CA-MP-MTI-4

The CA-MP-MTI-4 is the RTCM corrections cable that consists of the following parts:

- Molex connector: 2045320401; 1.25mm pitch, single row, positive lock, 4 circuits
- ODU connector: A1CWAM-P04XBC0-0000; AMC HD, break-away plug, 4 circuits
- Cable: 2.9 m, 12 core, AWG28, shielded, UL, -40°C +85°C -
- Molex crimp terminals: 5054311100; gold (Au) plating, 26-30 AWG _

Table 16 shows the pinning of the connections. The shield of the cable is only connected on the ODU connector side.

Function (MTi)	Wire colour	Molex pin no.	ODU pin no.
V_BCKP	Red	1	1
GND	Black	2	2
RTCM_TxD	Green	3	4
RTCM_RxD	White	4	3
SHIELD	-	-	SH

Figure 18 shows the cable length definition (from connector end-to-end). Figure 19 shows the pinning of both the Molex connector and the ODU connector. Table 17 shows the recommended mating parts for the Molex connector.

Figure 18: RTCM cable length definition

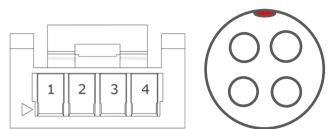


Figure 19: Numbering 4-pin connectors; left Mofex (cable entry view), right ODU (solder cup view).

Table 17: Recommended mating parts for 4-pins Molex connector

Part number	Manufacturer	Mounting	Description
5055680481	Molex	Vertical	1.25mm Pitch, Micro-Lock Plus PCB
5055670481	Molex	Right-Angle	Header, Single Row, Surface Mount, Gold Plating, 4 Circuits

4.4.2 Required antenna specifications

The MTi-680G requires an active antenna with at least the following specifications.

Table 18: Required antenna	a specifications for MTi-680G
----------------------------	-------------------------------

Parameter	Specification
Minimum active antenna gain ⁹	17 dB
Maximum active antenna gain ⁹	50 dB
Maximum noise figure	4 dB
Typical L1 band antenna gain (1559 – 1606 MHz) ¹⁰	3 dBic
Typical L2/E5b band antenna gain (1197 – 1249 MHz) ¹⁰	2 dBic
Axial ratio (max at Zenith)	2 dB
Phase centre variation (max over elevation/azimuth)	10 mm
Maximum group delay variation in-band	10 ns ¹¹
Typical out-of-band rejection	40 dB
Polarization	RHCP
EMI immunity out-of-band	30 V/m
ESD circuit protection (human body model air discharge)	15 kV

¹¹ At each GNSS system bandwidth. Inter-signal requirement is 50 ns max.

⁹ Including passive losses (filters, cables, connectors etc.)

¹⁰ Measured with a ground plane with 150 mm diameter

4.5 Mechanical stress

In general, it is recommended to place the MTi 600-series module in an area on the PCB where mechanical stress is minimal. The following paragraphs describe possible causes of mechanical stress and ways to reduce it.

4.5.1 Torque

The connector of the MTi-600 is soldered onto the PCB board which also contains the sensing elements. Care should be taken to design the mounting such (see chapter 4.3) that there is no stress on the connector when mounted on the PCB or connected with a ribbon cable. As any stress on the connector could potentially result in torque on the PCB which can lead to unwanted biases and signal noise.

4.5.2 Vibrations

The MTi 600-series features an industry-leading signal processing pipeline (AttitudeEngineTM) which rejects vibrations. For best results however, it is recommended that the MTi 600-series is mechanically isolated from vibrations as much as possible. Especially in applications where vibrations are likely to occur, the anchor points of the PCB that holds the MTi 600-series module should be dampened. The required type of dampening varies from application to application.

4.6 Magnetometer

The MTi 600-series uses a 3D magnetometer for measuring the geomagnetic field. This part is sensitive to magnetic disturbances. Magnetic disturbances can be calibrated for or identified and rejected by the MTi, however it is recommended to avoid their influence during hardware integration.

4.6.1 Ferromagnetic materials

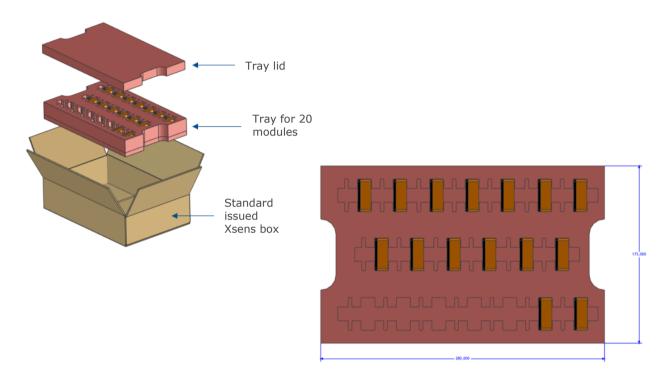
Ferromagnetic materials can be magnetized and the magnetic behaviour can change during operation. This behaviour will influence the measurements of the 3D magnetometer of the MTi 600-series.

Therefore, it is recommended to keep these ferromagnetic materials away from the MTi 600-series.

4.6.2 High currents

High current power lines on the PCB will introduce magnetic fields that may influence the measurements of the 3D magnetometer of the MTi 600-series. Place high current power lines away from the MTi 600-series. Example: a power line with a current of 100 mA at a distance of 10 mm from the magnetometer, will introduce an error of 2μ T.

More information on magnetic interference can be found in the *MTi Family Reference Manual*¹². Static magnetic disturbances can be calibrated for, see the *Magnetic Calibration Manual*¹².


 $^{^{12}}$ Links to the latest available documentation can be found via the following link: <u>Xsens MTi</u> <u>Documentation</u>

5 Packaging information

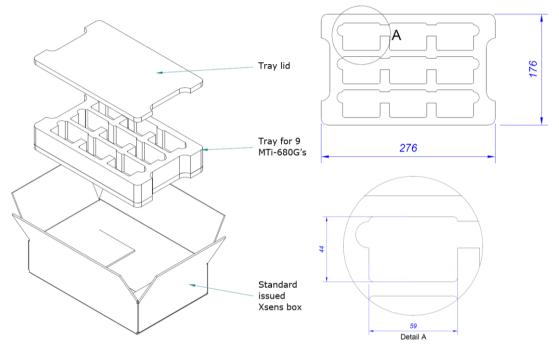
5.1 MTi 600-series module

The MTi 600-series module packaging boxes contain from 5 up to 20 modules.

Box Dimensions (mm)			Box pac inform	
Length	Width	Height	Qty/Tray MOQ 5	Qty/Box MOQ 5
285	185	75	5-20 units	5-20 units

NOTES:

- All dimensions are in millimeters.
- Pictured tray and box representative only, actual tray may look different.


CONTENT:

- 5 to 20 modules per box.
- Calibration certificate.

5.2 MTi-680G

The MTi-680G packaging boxes contain from 1 up to 9 MTi-680G's.

Box Dimensions (mm)		Box packaging information		
Length	Width	Height	Qty/Tray MOQ 1	Qty/Box MOQ 1
285	185	75	1-9 units	1-9 units

NOTES:

- All dimensions are in millimeters.
- Pictured tray and box representative only, actual tray may look different.

CONTENT:

- 1 to 9 MTi-680G's per box.
- Calibration certificate.

